Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Elife ; 122023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37847154

RESUMEN

DMRT1 is the testis-determining factor in several species of vertebrates, but its involvement in mammalian testes differentiation, where SRY is the testis-determining gene, remains ambiguous. So far, DMRT1 loss-of-function has been described in two mammalian species and induces different phenotypes: Disorders of Sex Development (46, XY DSD) in men and male infertility in mice. We thus abolished DMRT1 expression by CRISPR/Cas9 in a third species of mammal, the rabbit. First, we observed that gonads from XY DMRT1-/- rabbit fetuses differentiated like ovaries, highlighting that DMRT1 is involved in testis determination. In addition to SRY, DMRT1 is required in the supporting cells to increase the expression of the SOX9 gene, which heads the testicular genetic cascade. Second, we highlighted another function of DMRT1 in the germline since XX and XY DMRT1-/- ovaries did not undergo meiosis and folliculogenesis. XX DMRT1-/- adult females were sterile, showing that DMRT1 is also crucial for female fertility. To conclude, these phenotypes indicate an evolutionary continuum between non-mammalian vertebrates such as birds and non-rodent mammals. Furthermore, our data support the potential involvement of DMRT1 mutations in different human pathologies, such as 46, XY DSD as well as male and female infertility.


Animals that reproduce sexually have organs called gonads, the ovaries and testes, which produce eggs and sperm. These organs, which are different in males and females, originate from the same cells during the development of the embryo. As a general rule, the chromosomal sex of an embryo, which gets determined at fertilization, leads to the activation and repression of specific genes. This in turn, controls whether the cells that will form the gonads will differentiate to develop testes or ovaries. Disruption of the key genes involved in the differentiation of the gonads can lead to fertility problems, and in some cases, it can cause the gonads to develop in the 'opposite' direction, resulting in a sex reversal. Identifying these genes is therefore essential to know how to maintain or restore fertility. DMRT1 is a gene that drives the differentiation of gonadal cells into the testicular pathway in several species of animals with backbones, including species of fish, frogs and birds. However, its role in mammals ­ where testis differentiation is driven by a different gene called SRY ­ is not well understood. Indeed, when DMRT1 is disrupted in male humans it leads to disorders of sex development, while disrupting this gene in male mice causes infertility. To obtain more information about the roles of DMRT1 in mammalian species, Dujardin et al. disrupted the gene in a third species of mammal: the rabbit. Dujardin et al. observed that chromosomally-male rabbits lacking DMRT1 developed ovaries instead of testes, showing that in rabbits, both SRY and DMRT1 are both required to produce testes. Additionally, this effect is similar to what is seen in humans, suggesting that rabbits may be a better model for human gonadal differentiation than mice are. Additionally, Dujardin et al. were also able to show that in female rabbits, lack of DMRT1 led to infertility, an effect that had not been previously described in other species. The results of Dujardin et al. may lead to better models for gonadal development in humans, involving DMRT1 in the differentiation of testes. Interestingly, they also suggest the possibility that mutations in this gene may be responsible for some cases of infertility in women. Overall, these findings indicate that DMRT1 is a key fertility gene.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Testículo , Animales , Femenino , Masculino , Conejos , Trastorno del Desarrollo Sexual 46,XY/genética , Trastorno del Desarrollo Sexual 46,XY/metabolismo , Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Mamíferos/genética , Procesos de Determinación del Sexo/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Testículo/metabolismo
2.
Genes (Basel) ; 13(11)2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36360307

RESUMEN

Estrogens are steroid hormones produced by the aromatization of androgens by the aromatase enzyme, encoded by the CYP19A1 gene. Although generally referred to as "female sex hormones", estrogen is also produced in the adult testes of many mammals, including humans. To better understand the function of estrogens in the male, we used the rabbit model which is an important biomedical model. First, the expression of CYP19A1 transcripts was localized mainly in meiotic germ cells. Thus, testicular estrogen appears to be produced inside the seminiferous tubules. Next, the cells expressing ESR1 and ESR2 were identified, showing that estrogens could exert their function on post-meiotic germ cells in the tubules and play a role during sperm maturation, since ESR1 and ESR2 were detected in the cauda epididymis. Then, CRISPR/Cas9 CYP19A1-/- genetically modified rabbits were analyzed. CYP19A1-/- males showed decreased fertility with lower sperm count associated with hypo-spermatogenesis and lower spermatid number. Germ/sperm cell DNA methylation was unchanged, while sperm parameters were affected as CYP19A1-/- males exhibited reduced sperm motility associated with increased flagellar defects. In conclusion, testicular estrogens could be involved in the spermatocyte-spermatid transition in the testis, and in the acquisition of sperm motility in the epididymis.


Asunto(s)
Semen , Testículo , Humanos , Animales , Masculino , Conejos , Femenino , Testículo/metabolismo , Semen/metabolismo , Motilidad Espermática/genética , Espermatogénesis/genética , Estrógenos/metabolismo , Mamíferos
3.
PLoS Genet ; 15(2): e1007909, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30735494

RESUMEN

Gonad differentiation is a crucial step conditioning the future fertility of individuals and most of the master genes involved in this process have been investigated in detail. However, transcriptomic analyses of developing gonads from different animal models have revealed that hundreds of genes present sexually dimorphic expression patterns. DMXL2 was one of these genes and its function in mammalian gonads was unknown. We therefore investigated the phenotypes of total and gonad-specific Dmxl2 knockout mouse lines. The total loss-of-function of Dmxl2 was lethal in neonates, with death occurring within 12 hours of birth. Dmxl2-knockout neonates were weak and did not feed. They also presented defects of olfactory information transmission and severe hypoglycemia, suggesting that their premature death might be due to global neuronal and/or metabolic deficiencies. Dmxl2 expression in the gonads increased after birth, during follicle formation in females and spermatogenesis in males. DMXL2 was detected in both the supporting and germinal cells of both sexes. As Dmxl2 loss-of-function was lethal, only limited investigations of the gonads of Dmxl2 KO pups were possible. They revealed no major defects at birth. The gonadal function of Dmxl2 was then assessed by conditional deletions of the gene in gonadal supporting cells, germinal cells, or both. Conditional Dmxl2 ablation in the gonads did not impair fertility in males or females. By contrast, male mice with Dmxl2 deletions, either throughout the testes or exclusively in germ cells, presented a subtle testicular phenotype during the first wave of spermatogenesis that was clearly detectable at puberty. Indeed, Dmxl2 loss-of-function throughout the testes or in germ cells only, led to sperm counts more than 60% lower than normal and defective seminiferous tubule architecture. Transcriptomic and immunohistochemichal analyses on these abnormal testes revealed a deregulation of Sertoli cell phagocytic activity related to germ cell apoptosis augmentation. In conclusion, we show that Dmxl2 exerts its principal function in the testes at the onset of puberty, although its absence does not compromise male fertility in mice.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Espermatogénesis/genética , Espermatozoides/fisiología , Animales , Apoptosis/genética , Femenino , Fertilidad/genética , Células Germinativas/fisiología , Gónadas/fisiología , Infertilidad Femenina/genética , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Túbulos Seminíferos/fisiología , Células de Sertoli/fisiología , Testículo/fisiología
4.
J Gen Virol ; 97(9): 2399-2410, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27411695

RESUMEN

Herpesvirus gene expression is temporally regulated, with immediate early (IE), early (E) and late (L) genes. ICP27, which is involved in post-transcriptional regulation, is the only IE gene product conserved in all herpesviruses. We show here that the ICP27 transcript of the oncogenic Marek's disease virus shares the same polyadenylation signal as the bicistronic glycoprotein K-ICP27 transcript and is regulated by alternative promoter usage, with transcription from its own promoter (pICP27) or that of gK (pgK). The pgK can generate a spliced ICP27 transcript yielding an N-terminal-deleted ICP27 isoform (ICP27ΔN) that, like ICP27, co-localizes with the SR protein in infected cells, but with a diffuse nuclear distribution. The pICP27 includes functional responsive elements (REs) for SP1, AP1 and CREB, is essentially active during the lytic phase and leads to exclusive expression of the native form of ICP27. The alternative promoter, pgK, including active REs for GATA, P53 and CREB, preferentially generates the gK transcript during the lytic phase and the spliced ICP27 transcript (ICP27ΔN) during the latent phase. An analysis of the DNA methylation marks of each promoter showed that pgK was systematically demethylated, whereas pICP27 was methylated during latency and demethylated during the lytic stage. Thus, MDV ICP27 gene expression is dependent on alternative promoters, the usage of which is regulated by DNA methylation, which differs between viral stages.


Asunto(s)
Regulación Viral de la Expresión Génica , Mardivirus/genética , Mardivirus/metabolismo , Regiones Promotoras Genéticas , Isoformas de Proteínas/biosíntesis , Transcripción Genética , Proteínas Virales/biosíntesis , Animales , Línea Celular , Pollos , Isoformas de Proteínas/genética , Proteínas Virales/genética
5.
FEBS Open Bio ; 6(1): 4-15, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-27047737

RESUMEN

Three genes of the prion protein gene family are expressed in gonads. Comparative analyses of their expression patterns in mice and goats revealed constant expression of PRNP and SPRN in both species and in both male and female gonads, but with a weaker expression of SPRN. By contrast, expression of PRND was found to be sex-dimorphic, in agreement with its role in spermatogenesis. More importantly, our study revealed that PRND seems to be a key marker of foetal Leydig cells specifically in goats, suggesting a yet unknown role for its encoded protein Doppel during gonadal differentiation in nonrodent mammals.

6.
Biol Reprod ; 91(6): 153, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25395674

RESUMEN

FOXL2 loss of function in goats leads to the early transdifferentiation of ovaries into testes, then to the full sex reversal of XX homozygous mutants. By contrast, Foxl2 loss of function in mice induces an arrest of follicle formation after birth, followed by complete female sterility. In order to understand the molecular role of FOXL2 during ovarian differentiation in the goat species, putative FOXL2 target genes were determined at the earliest stage of gonadal sex-specific differentiation by comparing the mRNA profiles of XX gonads expressing the FOXL2 protein or not. Of these 163 deregulated genes, around two-thirds corresponded to testicular genes that were up-regulated when FOXL2 was absent, and only 19 represented female-associated genes, down-regulated in the absence of FOXL2. FOXL2 should therefore be viewed as an antitestis gene rather than as a female-promoting gene. In particular, the key testis-determining gene DMRT1 was found to be up-regulated ahead of SOX9, thus suggesting in goats that SOX9 primary up-regulation may require DMRT1. Overall, our results equated to FOXL2 being an antitestis gene, allowing us to propose an alternative model for the sex-determination process in goats that differs slightly from that demonstrated in mice.


Asunto(s)
Trastornos Testiculares del Desarrollo Sexual 46, XX/genética , Factores de Transcripción Forkhead/genética , Genitales Femeninos/metabolismo , Cabras/fisiología , Factor de Transcripción SOX9/genética , Factores de Transcripción/genética , Trastornos Testiculares del Desarrollo Sexual 46, XX/veterinaria , Animales , Animales Modificados Genéticamente , Transdiferenciación Celular , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Genitales Femeninos/embriología , Cabras/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ovario/metabolismo , Procesos de Determinación del Sexo/genética , Testículo/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA