Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Asunto principal
Asunto de la revista
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 226: 112365, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34823208

RESUMEN

The widespread use of conventional chemical antifungal agents has led to worldwide concern regarding the selection of resistant isolates. In this scenario, antimicrobial photodynamic treatment (APDT) has emerged as a promising alternative to overcome this issue. The technique is based on the use of a photosensitizer (PS) and light in the presence of molecular oxygen. Under these conditions, the PS generates reactive oxygen species which damage the biomolecules of the target organism leading to cell death. The great potential of APDT against plant-pathogenic fungi has already been reported both in vitro and in planta, indicating this control measure has the potential to be widely used in crop plants. However, there is a lack of studies on environmental risk with ecotoxicological assessment of PSs used in APDT. Therefore, this study aimed to evaluate the environmental toxicity of four phenothiazinium PSs: i) methylene blue (MB), ii) new methylene blue N (NMBN), iii) toluidine blue O (TBO), and iv) dimethylmethylene blue (DMMB) and also of the commercial antifungal NATIVO®, a mixture of trifloxystrobin and tebuconazole. The experiments were performed with Daphnia similis neonates and zebrafish embryos. Our results showed that the PSs tested had different levels of toxicity, with MB being the less toxic and DMMB being the most. Nonetheless, the environmental toxicity of these PSs were lower when compared to that of NATIVO®. Furthermore, estimates of bioconcentration and of biotransformation half-life indicated that the PSs are environmentally safer than NATIVO®. Taken together, our results show that the toxicity associated with phenothiazinium PSs would not constitute an impediment to their use in APDT. Therefore, APDT is a promising approach to control plant-pathogenic fungi with reduced risk for selecting resistant isolates and lower environmental impacts when compared to commonly used antifungal agents.


Asunto(s)
Triazoles
2.
Genet. mol. biol ; 40(3): 656-664, July-Sept. 2017. graf
Artículo en Inglés | LILACS | ID: biblio-892432

RESUMEN

Abstract The cytotoxicity and genotoxicity of the stilbenes (E)-methyl-4-(3-5-dimethoxystyryl)benzoate (ester), (E)-4-(3-5-dimethoxystyryl)aniline (amino), (Z)-1,3-dimethoxy-5-(4-methoxystyryl)benzene (cis-TMS) and (E)-1,3-dimethoxy-5-(4-methoxystyryl)benzene (trans-TMS) were investigated in this work. Structural modifications of resveratrol, a naturally occurring stilbene, have been previously performed, including the replacement of hydroxyl by different functional groups. Such modifications resulted in significant improvement of target-specific effects on cell death and antiproliferative responses. The parameters were evaluated using XTT assay, clonogenic survival assay and the cytokinesis-block micronucleus assay in CHO-K1 and HepG2 cell lines. The results showed that cis-TMS is approximately 250-fold more cytotoxic than the amino and ester, and 128-fold more cytotoxic than trans-TMS. When genotoxicity was evaluated, only the trans-TMS did not significantly increase the frequency of micronucleus (MN). While the cis-TMS induced a mean of 5.2 and 5.9 MN/100 cells at 0.5 μM in CHO-K1 and HepG2, respectively, the amino and ester induced 3.1 and 3.6 MN/100 cells at 10 μM in CHO-K1, respectively, and 3.5 and 3.8 in HepG2. Trans-TMS is genotoxic only in HepG2 cells. Based on these results, the cis-TMS was the most cytotoxic and genotoxic compound in both cell lines.

3.
Genet Mol Biol ; 40(3): 656-664, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28696482

RESUMEN

The cytotoxicity and genotoxicity of the stilbenes (E)-methyl-4-(3-5-dimethoxystyryl)benzoate (ester), (E)-4-(3-5-dimethoxystyryl)aniline (amino), (Z)-1,3-dimethoxy-5-(4-methoxystyryl)benzene (cis-TMS) and (E)-1,3-dimethoxy-5-(4-methoxystyryl)benzene (trans-TMS) were investigated in this work. Structural modifications of resveratrol, a naturally occurring stilbene, have been previously performed, including the replacement of hydroxyl by different functional groups. Such modifications resulted in significant improvement of target-specific effects on cell death and antiproliferative responses. The parameters were evaluated using XTT assay, clonogenic survival assay and the cytokinesis-block micronucleus assay in CHO-K1 and HepG2 cell lines. The results showed that cis-TMS is approximately 250-fold more cytotoxic than the amino and ester, and 128-fold more cytotoxic than trans-TMS. When genotoxicity was evaluated, only the trans-TMS did not significantly increase the frequency of micronucleus (MN). While the cis-TMS induced a mean of 5.2 and 5.9 MN/100 cells at 0.5 µM in CHO-K1 and HepG2, respectively, the amino and ester induced 3.1 and 3.6 MN/100 cells at 10 µM in CHO-K1, respectively, and 3.5 and 3.8 in HepG2. Trans-TMS is genotoxic only in HepG2 cells. Based on these results, the cis-TMS was the most cytotoxic and genotoxic compound in both cell lines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA