Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
BMC Vet Res ; 20(1): 5, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172908

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is a viral disease with worldwide distribution and an enormous economic impact. To control PRRS virus (PRRSV) infection, modified live vaccines (MLVs) are widely used in the field, mainly administered via an intramuscular (IM) route. Currently, some MLVs are authorized for intradermal (ID) administration, which has many practical and welfare advantages. The objectives of the study were to compare the immune responses (systemic in blood and mucosal in lungs) and vaccine efficacy in preventing challenge strain transmission after IM or needle-free ID immunization of piglets with an MLV against PRRSV-1 (MLV1). METHODS: Groups of sixteen 5-week-old specific pathogen-free piglets were vaccinated with Porcilis PRRS® (MSD) either by an IM (V+ IM) or ID route (V+ ID) using an IDAL®3G device or kept unvaccinated (V-). Four weeks after vaccination, in each group, 8 out of the 16 piglets were challenged intranasally with a PRRSV-1 field strain, and one day later, the inoculated pigs were mingled by direct contact with the remaining 8 sentinel noninoculated pigs to evaluate PRRSV transmission. Thus, after the challenge, each group (V+ IM, V+ ID or V-) included 8 inoculated and 8 contact piglets. During the postvaccination and postchallenge phases, PRRSV replication (RT-PCR), PRRSV-specific antibodies (ELISA IgG and IgA, virus neutralization tests) and cell-mediated immunity (ELISPOT Interferon gamma) were monitored in blood and bronchoalveolar lavages (BALs). RESULTS: Postvaccination, vaccine viremia was lower in V+ ID pigs than in V+ IM pigs, whereas the cell-mediated immune response was detected earlier in the V+ ID group at 2 weeks postvaccination. In the BAL fluid, a very low mucosal immune response (humoral and cellular) was detected. Postchallenge, the vaccine efficacy was similar in inoculated animals with partial control of PRRSV viremia in V+ ID and V+ IM animals. In vaccinated sentinel pigs, vaccination drastically reduced PRRSV transmission with similar estimated transmission rates and latency durations for the V+ IM and V+ ID groups. CONCLUSIONS: Our results show that the tested MLV1 induced a faster cell-mediated immune response after ID immunization two weeks after vaccination but was equally efficacious after IM or ID immunization towards a challenge four weeks later. Considering the practical and welfare benefits of ID vaccination, these data further support the use of this route for PRRS MLVs.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Vacunas Virales , Porcinos , Animales , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Viremia/veterinaria , Inmunidad Mucosa , Anticuerpos Antivirales , Vacunación/veterinaria , Vacunación/métodos , Vacunas Atenuadas
2.
Front Vet Sci ; 10: 1225446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745209

RESUMEN

Modeling of infectious diseases at the livestock-wildlife interface is a unique subset of mathematical modeling with many innate challenges. To ascertain the characteristics of the models used in these scenarios, a scoping review of the scientific literature was conducted. Fifty-six studies qualified for inclusion. Only 14 diseases at this interface have benefited from the utility of mathematical modeling, despite a far greater number of shared diseases. The most represented species combinations were cattle and badgers (for bovine tuberculosis, 14), and pigs and wild boar [for African (8) and classical (3) swine fever, and foot-and-mouth and disease (1)]. Assessing control strategies was the overwhelming primary research objective (27), with most studies examining control strategies applied to wildlife hosts and the effect on domestic hosts (10) or both wild and domestic hosts (5). In spatially-explicit models, while livestock species can often be represented through explicit and identifiable location data (such as farm, herd, or pasture locations), wildlife locations are often inferred using habitat suitability as a proxy. Though there are innate assumptions that may not be fully accurate when using habitat suitability to represent wildlife presence, especially for wildlife the parsimony principle plays a large role in modeling diseases at this interface, where parameters are difficult to document or require a high level of data for inference. Explaining observed transmission dynamics was another common model objective, though the relative contribution of involved species to epizootic propagation was only ascertained in a few models. More direct evidence of disease spill-over, as can be obtained through genomic approaches based on pathogen sequences, could be a useful complement to further inform such modeling. As computational and programmatic capabilities advance, the resolution of the models and data used in these models will likely be able to increase as well, with a potential goal being the linking of modern complex ecological models with the depth of dynamics responsible for pathogen transmission. Controlling diseases at this interface is a critical step toward improving both livestock and wildlife health, and mechanistic models are becoming increasingly used to explore the strategies needed to confront these diseases.

3.
Microbiol Spectr ; 11(4): e0184423, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37395665

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infected patients mainly displays pulmonary and oronasal tropism; however, the presence of the virus has also been demonstrated in the stools of patients and consequently in wastewater treatment plant effluents, raising the question of the potential risk of environmental contamination (such as seawater contamination) through inadequately treated wastewater spillover into surface or coastal waters even if the environmental detection of viral RNA alone does not substantiate risk of infection. Therefore, here, we decided to experimentally evaluate the persistence of the porcine epidemic diarrhea virus (PEDv), considered as a coronavirus representative model, in the coastal environment of France. Coastal seawater was collected, sterile-filtered, and inoculated with PEDv before incubation for 0 to 4 weeks at four temperatures representative of those measured along the French coasts throughout the year (4, 8, 15, and 24°C). The decay rate of PEDv was determined using mathematical modeling and was used to determine the half-life of the virus along the French coast in accordance with temperatures from 2000 to 2021. We experimentally observed an inverse correlation between seawater temperature and the persistence of infectious viruses in seawater and confirm that the risk of transmission of infectious viruses from contaminated stool in wastewater to seawater during recreational practices is very limited. The present work represents a good model to assess the persistence of coronaviruses in coastal environments and contributes to risk evaluation, not only for SARS-CoV-2 persistence, but also for other coronaviruses, specifically enteric coronaviruses from livestock. IMPORTANCE The present work addresses the question of the persistence of coronavirus in marine environments because SARS-CoV-2 is regularly detected in wastewater treatment plants, and the coastal environment, subjected to increasing anthropogenic pressure and the final receiver of surface waters and sometimes insufficiently depurated wastewater, is particularly at risk. The problem also arises in the possibility of soil contamination by CoV from animals, especially livestock, during manure application, where, by soil impregnation and runoff, these viruses can end up in seawater. Our findings are of interest to researchers and authorities seeking to monitor coronaviruses in the environment, either in tourist areas or in regions of the world where centralized systems for wastewater treatment are not implemented, and more broadly, to the scientific community involved in "One Health" approaches.


Asunto(s)
COVID-19 , Virus de la Diarrea Epidémica Porcina , Animales , Porcinos , COVID-19/epidemiología , Aguas Residuales , SARS-CoV-2 , Suelo
4.
One Health ; 15: 100433, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36277103

RESUMEN

While biosecurity, a central component of the One Health concept, is clearly defined, a harmonized definition of the term ´biosecurity measure´ (BSM) is missing. In turn, particularly at the farm and policy level, this leads to misunderstandings, low acceptance, poor implementation, and thus suboptimal biosecurity along the food animal production chain. Moreover, different views on BSMs affects making comparisons both at the policy level as well as in the scientific community. Therefore, as part of the One Health EJP BIOPIGEE project, a work group i) collected and discussed relevant inclusion and exclusion criteria for measures to be considered in the context of biosecurity and ii) conducted a systematic literature review for potentially existing definitions for the term BSM. This exercise confirmed the lack of a definition of BSM, underlining the importance of the topic. In the pool of articles considered relevant to defining the term BSM, specific research themes were identified. Based on these outcomes, we propose a definition of the term BSM: "A biosecurity measure (BSM) - is the implementation of a segregation, hygiene, or management procedure (excluding medically effective feed additives and preventive/curative treatment of animals) that specifically aims at reducing the probability of the introduction, establishment, survival, or spread of any potential pathogen to, within, or from a farm, operation or geographical area." The definition provides a basis for policymakers to identify factual BSMs, highlights the point of implementation and supports to achieve the necessary quality standards of biosecurity in food animal production. It also enables clear, harmonized, cross-sectoral communication of best biosecurity practices to and from relevant stakeholders and thus contribute to improving biosecurity and thereby strengthen the One Health approach.

5.
Transbound Emerg Dis ; 69(6): 3160-3166, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36197436

RESUMEN

The spread of highly pathogenic avian influenza (HPAI) viruses worldwide has serious consequences for animal health and a major economic impact on the poultry production sector. Since 2014, Europe has been severely hit by several HPAI epidemics, with France being the most affected country. Most recently, France was again affected by two devastating HPAI epidemics in 2020-21 and 2021-22. We conducted a descriptive analysis of the 2020-21 and 2021-22 epidemics, as a first step towards identifying the poultry sector's remaining vulnerabilities regarding HPAI viruses in France. We examined the spatio-temporal distribution of outbreaks that occurred in France in 2020-21 and 2021-22, and we assessed the outbreaks' spatial distribution in relation to the 2016-17 epidemic and to the two 'high-risk zones' recently incorporated into French legislation to strengthen HPAI prevention and control. There were 468 reported outbreaks during the 2020-21 epidemic and 1375 outbreaks during the 2021-22 epidemic. In both epidemics, the outbreaks' distribution matched extremely well that of 2016-17, and most outbreaks (80.6% and 68.4%) were located in the two high-risk zones. The southwestern high-risk zone was affected in both epidemics, while the western high-risk zone was affected for the first time in 2021-22, explaining the extremely high number of outbreaks reported. As soon as the virus reached the high-risk zones, it started to spread between farms at very high rates, with each infected farm infecting between two and three other farms at the peaks of transmission. We showed that the spatial distribution model used to create the two high-risk zones was able to predict the location of outbreaks for the 2020-21 and 2021-22 epidemics. These zones were characterized by high poultry farm densities; future efforts should, therefore, focus on reducing the density of susceptible poultry in highly dense areas.


Asunto(s)
Epidemias , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Aves de Corral , Brotes de Enfermedades/veterinaria , Epidemias/veterinaria , Francia/epidemiología , Enfermedades de las Aves de Corral/epidemiología
6.
Prev Vet Med ; 208: 105750, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36054970

RESUMEN

African Swine Fever (ASF) has been slowly but steadily increasing its endemic range throughout Europe, posing an imminent risk to the pig industry. ASF transmission among wild boar occurs mainly through wild boar population movements, hence wild boar presence and density are important risk factors for introducing, maintaining, and spreading the disease. The understanding of wild boar population dynamics and their role in ASF transmission and persistence remains limited. It is crucial to gain knowledge in this area to improve wildlife management while minimizing the risks for ASF introduction and spread. We adapted an individual-based spatio-temporal stochastic model developed by Halasa et al. (2019) and tailored it to two regions in France. The model assessed yearly hunting activity, the carcass persistence seasonality, and the specific landscape characteristics of the Franco-Belgian border region and the Pyrénées-Atlantiques department. Following the establishment of local population dynamics through preliminary runs of the model, the model was run 100 iterations over 8 years in the two study areas where ASF was randomly seeded after the 2nd year of simulation. For each scenario, the model was initiated with 500 wild boar groups randomly spread across the study areas. Hunting activities were included and excluded to assess the impact on population growth and ASF spread. Results showed an ever-growing wild boar population for all scenarios, which was balanced when hunting activities were included. When introducing ASF, the wild boar populations were dramatically impacted in both areas with a decrease of 63 % of the population at the Franco-Belgian border and 86 % in the Pyrénées-Atlantiques department. Habitat fragmentation and landscape connectivity were highlighted as important factors shaping ASF propagation. The Franco-Belgian border, which had the most fragmented habitat with unsuitable areas for wild boars, was shown to limit wild boar movements, reducing the probability, and spread of ASF across the landscape. The lack of connectivity was reflected in a less effective transmission and lower number of infected groups (406 versus 467). In contrast, the epidemic duration was lengthened in the fragmented habitat compared to the homogenous area (2.6 years vs 1.6 years). This study provided information on defining and implementing control measures in case of an ASF incursion, since delimitation of the area via fences artificially induces landscape fragmentation, which is important for controlling ASF outbreaks.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Porcinos , Animales , Fiebre Porcina Africana/epidemiología , Caza , Sus scrofa , Ecosistema , Factores de Riesgo
7.
PLoS One ; 17(4): e0266457, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35390068

RESUMEN

The circulation of livestock pathogens in the pig industry is strongly related to animal movements. Epidemiological models developed to understand the circulation of pathogens within the industry should include the probability of transmission via between-farm contacts. The pig industry presents a structured network in time and space, whose composition changes over time. Therefore, to improve the predictive capabilities of epidemiological models, it is important to identify the drivers of farmers' choices in terms of trade partnerships. Combining complex network analysis approaches and exponential random graph models, this study aims to analyze patterns of the swine industry network and identify key factors responsible for between-farm contacts at the French scale. The analysis confirms the topological stability of the network over time while highlighting the important roles of companies, types of farm, farm sizes, outdoor housing systems and batch-rearing systems. Both approaches revealed to be complementary and very effective to understand the drivers of the network. Results of this study are promising for future developments of epidemiological models for livestock diseases. This study is part of the One Health European Joint Programme: BIOPIGEE.


Asunto(s)
Crianza de Animales Domésticos , Enfermedades de los Porcinos , Crianza de Animales Domésticos/métodos , Animales , Agricultores , Granjas , Humanos , Ganado , Porcinos
8.
Transbound Emerg Dis ; 69(5): e2132-e2144, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35390229

RESUMEN

African swine fever (ASF) represents the main threat to swine production, with heavy economic consequences for both farmers and the food industry. The spread of the virus that causes ASF through Europe raises the issues of identifying transmission routes and assessing their relative contributions in order to provide insights to stakeholders for adapted surveillance and control measures. A simulation model was developed to assess ASF spread over the commercial swine network in France. The model was designed from raw movement data and actual farm characteristics. A metapopulation approach was used, with transmission processes at the herd level potentially leading to external spread to epidemiologically connected herds. Three transmission routes were considered: local transmission (e.g. fomites, material exchange), movement of animals from infected to susceptible sites, and transit of trucks without physical animal exchange. Surveillance was represented by prevalence and mortality detection thresholds at herd level, which triggered control measures through movement ban for detected herds and epidemiologically related herds. The time from infection to detection varied between 8 and 21 days, depending on the detection criteria, but was also dependent on the types of herds in which the infection was introduced. Movement restrictions effectively reduced the transmission between herds, but local transmission was nevertheless observed in higher proportions highlighting the need of global awareness of all actors of the swine industry to mitigate the risk of local spread. Raw movement data were directly used to build a dynamic network on a realistic timescale. This approach allows for a rapid update of input data without any pre-treatment, which could be important in terms of responsiveness, should an introduction occur.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/prevención & control , Animales , Simulación por Computador , Toma de Decisiones , Brotes de Enfermedades/veterinaria , Europa (Continente)/epidemiología , Porcinos , Enfermedades de los Porcinos/epidemiología
9.
Transbound Emerg Dis ; 69(5): e1574-e1583, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35195353

RESUMEN

In 2016-2017, France experienced a devastating epidemic of highly pathogenic avian influenza (HPAI) H5N8, with more than 400 outbreaks reported in poultry farms. We analyzed the spatiotemporal dynamics of the epidemic using a structured-coalescent-based phylodynamic approach that combined viral genomic data (n = 196; one viral genome per farm) and epidemiological data. In the process, we estimated viral migration rates between départements (French administrative regions) and the temporal dynamics of the effective viral population size (Ne) in each département. Viral migration rates quantify viral spread between départements and Ne is a population genetic measure of the epidemic size and, in turn, is indicative of the within-département transmission intensity. We extended the phylodynamic analysis with a generalized linear model to assess the impact of multiple factors-including large-scale preventive culling and live-duck movement bans-on viral migration rates and Ne. We showed that the large-scale culling of ducks that was initiated on 4 January 2017 significantly reduced the viral spread between départements. No relationship was found between the viral spread and duck movements between départements. The within-département transmission intensity was found to be weakly associated with the intensity of duck movements within départements. Together, these results indicated that the virus spread in short distances, either between adjacent départements or within départements. Results also suggested that the restrictions on duck transport within départements might not have stopped the viral spread completely. Overall, we demonstrated the usefulness of phylodynamics in characterizing the dynamics of a HPAI epidemic and assessing control measures. This method can be adapted to investigate other epidemics of fast-evolving livestock pathogens.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Brotes de Enfermedades/veterinaria , Patos , Francia/epidemiología , Subtipo H5N8 del Virus de la Influenza A/genética , Aves de Corral
10.
Transbound Emerg Dis ; 69(4): e532-e546, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34590433

RESUMEN

African swine fever (ASF) is considered the most impactful transboundary swine disease. In the absence of effective vaccines, control strategies are heavily dependent on mass depopulation and shipment restrictions. Here, we developed a nested multiscale model for the transmission of ASF, combining a spatially explicit network model of animal shipments with a deterministic compartmental model for the dynamics of two ASF strains within 3 km × 3 km pixels in one Brazilian state. The model outcomes are epidemic duration, number of secondary infected farms and pigs, and distance of ASF spread. The model also shows the spatial distribution of ASF epidemics. We analyzed quarantine-based control interventions in the context of mortality trigger thresholds for the deployment of control strategies. The mean epidemic duration of a moderately virulent strain was 11.2 days, assuming the first infection is detected (best-case scenario), and 15.9 days when detection is triggered at 10% mortality. For a highly virulent strain, the epidemic duration was 6.5 days and 13.1 days, respectively. The distance from the source to infected locations and the spatial distribution was not dependent on strain virulence. Under the best-case scenario, we projected an average number of infected farms of 23.77 farms and 18.8 farms for the moderate and highly virulent strains, respectively. At 10% mortality-trigger, the predicted number of infected farms was on average 46.27 farms and 42.96 farms, respectively. We also demonstrated that the establishment of ring quarantine zones regardless of size (i.e. 5 km, 15 km) was outperformed by backward animal movement tracking. The proposed modelling framework provides an evaluation of ASF epidemic potential, providing a ranking of quarantine-based control strategies that could assist animal health authorities in planning the national preparedness and response plan.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Epidemias , Enfermedades de los Porcinos , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/prevención & control , Virus de la Fiebre Porcina Africana/fisiología , Animales , Brotes de Enfermedades/veterinaria , Epidemias/prevención & control , Epidemias/veterinaria , Granjas , Porcinos , Enfermedades de los Porcinos/epidemiología
11.
Transbound Emerg Dis ; 68(6): 3151-3155, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34170081

RESUMEN

Following the emergence of highly pathogenic avian influenza (H5N8) in France in early December 2020, we used duck mortality data from the index farm to investigate within-flock transmission dynamics. A stochastic epidemic model was fitted to the daily mortality data and model parameters were estimated using an approximate Bayesian computation sequential Monte Carlo (ABC-SMC) algorithm. The model predicted that the first bird in the flock was infected 5 days (95% credible interval, CI: 3-6) prior to the day of suspicion and that the transmission rate was 4.1 new infections per day (95% CI: 2.8-5.8). On average, ducks became infectious 4.1 h (95% CI: 0.7-9.1) after infection and remained infectious for 4.3 days (95% CI: 2.8-5.7). The model also predicted that 34% (50% prediction interval: 8%-76%) of birds would already be infectious by the day of suspicion, emphasizing the substantial latent threat this virus could pose to other poultry farms and to neighbouring wild birds. This study illustrates how mechanistic models can help provide rapid relevant insights that contribute to the management of infectious disease outbreaks of farmed animals. These methods can be applied to future outbreaks and the resulting parameter estimates made available to veterinary services within a few hours.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Teorema de Bayes , Brotes de Enfermedades/veterinaria , Patos , Francia/epidemiología , Gripe Aviar/epidemiología , Enfermedades de las Aves de Corral/epidemiología
12.
Vaccines (Basel) ; 9(4)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923464

RESUMEN

Modified live vaccines (MLVs) against the porcine reproductive and respiratory syndrome virus (PRRSV) have been regularly associated with safety issues, such as reversion to virulence. In order to characterize the phenotypic and genetic evolution of the PRRSV-1 DV strain from the Porcilis® PRRS MLV after limited passages in pigs, three in vivo experiments were performed. Trial#1 aimed (i) at studying transmission of the vaccine strain from vaccinated to unvaccinated contact pigs. Trial#2 and Trial#3 were designed (ii) to assess the reproducibility of Trial#1, using another vaccine batch, and (iii) to compare the virulence levels of two DV strains isolated from vaccinated (passage one) and diseased contact pigs (passage two) from Trial#1. DV strain isolates from vaccinated and contact pigs from Trial#1 and Trial#2 were submitted to Next-Generation Sequencing (NGS) full-genome sequencing. All contact animals from Trial#1 were infected and showed significantly increased viremia compared to vaccinated pigs, whereas no such change was observed during Trial#2. In Trial#3, viremia and transmission were higher for inoculated pigs with passage two of the DV strain, compared with passage one. In this study, we showed that the re-adaptation of the DV strain to pigs is associated with faster replication and increased transmission of the vaccine strain. Punctually, a decrease of attenuation of the DV vaccine strain associated with clinical signs and increased viremia may occur after limited passages in pigs. Furthermore, we identified three mutations linked to pig re-adaptation and five other mutations as potential virulence determinants.

13.
Prev Vet Med ; 191: 105358, 2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33930624

RESUMEN

The spread of African swine fever (ASF) poses a grave threat to the global swine industry. Without an available vaccine, understanding transmission dynamics is essential for designing effective prevention, surveillance, and intervention strategies. These dynamics can often be unraveled through mechanistic modelling. To examine the assumptions on transmission and objectives of the mechanistic models of ASF, a systematic review of the scientific literature was conducted. Articles were examined across multiple epidemiological and model characteristics, with filiation between models determined through the creation of a neighbor-joined tree using phylogenetic software. Thirty-four articles qualified for inclusion, with four main modelling objectives identified: estimating transmission parameters (11 studies), assessing determinants of transmission (7), examining consequences of hypothetical outbreaks (5), assessing alternative control strategies (11). Population-based (17), metapopulation (5), and individual-based (12) model frameworks were represented, with population-based and metapopulation models predominantly used among domestic pigs, and individual-based models predominantly represented among wild boar. The majority of models (25) were parameterized to the genotype II isolates currently circulating in Europe and Asia. Estimated transmission parameters varied widely among ASFV strains, locations, and transmission scale. Similarly, parameter assumptions between models varied extensively. Uncertainties on epidemiological and ecological parameters were usually accounted for to assess the impact of parameter values on the modelled infection trajectory. To date, almost all models are host specific, being developed for either domestic pigs or wild boar despite the fact that spillover events between domestic pigs and wild boar are evidenced to play an important role in ASF outbreaks. Consequently, the development of more models incorporating such transmission routes is crucial. A variety of codified and hypothetical control strategies were compared however they were all a priori defined interventions. Future models, built to identify the optimal contributions across many control methods for achieving specific outcomes should provide more useful information for policy-makers. Further, control strategies were examined in competition with each other, which is opposed to how they would actually be synergistically implemented. While comparing strategies is beneficial for identifying a rank-order efficacy of control methods, this structure does not necessarily determine the most effective combination of all available strategies. In order for ASFV models to effectively support decision-making in controlling ASFV globally, these modelling limitations need to be addressed.

14.
Sci Rep ; 11(1): 2098, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483559

RESUMEN

African swine fever (ASF) has affected Romania since July 2017, with considerable economic and social consequences, despite the implementation of control measures mainly based on stamping out of infected pig populations. On the basis of the 2973 cumulative recorded cases up to September 2019 among wild boars and domestic pigs, analysis of the epidemiological characteristics could help to identify the factors favoring the persistence and spread of ASF. A statistical framework, based on a random forest methodology, was therefore developed to assess the spatiotemporal features of the epidemics and their relationships with environmental, human, and agricultural factors. The landscape of Romania was associated with the infection dynamics, particularly concerning forested and wetland areas. Waterways were also identified as a pivotal factor, raising questions about possible waterborne transmission since these waterways are often used as a water supply for backyard holdings. However, human activity was clearly identified as the main risk factor for the spread of ASF. Although the situation in Romania cannot be directly transposed to intensive pig farming countries, the findings of this study highlight the need for strict biosecurity measures on farms, and during transportation, to avoid ASF transmission at large geographic and temporal scales.


Asunto(s)
Fiebre Porcina Africana/epidemiología , Brotes de Enfermedades , Modelos Estadísticos , Fiebre Porcina Africana/transmisión , Animales , Análisis por Conglomerados , Granjas , Factores de Riesgo , Rumanía/epidemiología , Porcinos
15.
Transbound Emerg Dis ; 68(3): 1541-1549, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32910533

RESUMEN

African swine fever (ASF) represents a global threat with huge economic consequences for the swine industry. Even though direct contact is likely to be the main transmission route from infected to susceptible hosts, recent epidemiological investigations have raised questions regarding the role of haematophagous arthropods, in particular the stable fly (Stomoxys calcitrans). In this study, we developed a mechanistic vector-borne transmission model for ASF virus (ASFV) within an outdoor domestic pig farm in order to assess the relative contribution of stable flies to the spread of the virus. The model was fitted to the ecology of the vector, its blood-feeding behaviour and pig-to-pig transmission dynamic. Model outputs suggested that in a context of low abundance (<5 flies per pig), stable flies would play a minor role in the spread of ASFV, as they are expected to be responsible for around 10% of transmission events. However, with abundances of 20 and 50 stable flies per pig, the vector-borne transmission would likely be responsible for almost 30% and 50% of transmission events, respectively. In these situations, time to reach a pig mortality of 10% would be reduced by around 26% and 40%, respectively. The sensitivity analysis emphasized that the expected relative contribution of stable flies was strongly dependent on the volume of blood they regurgitated and the infectious dose for pigs. This study identified crucial knowledge gaps that need to be filled in order to assess more precisely the potential contribution of stable flies to the spread of ASFV, including a quantitative description of the populations of haematophagous arthropods that could be found in pig farms, a better understanding of blood-feeding behaviours of stable flies and the quantification of the probability that stable flies partially fed with infectious blood transmit the virus to a susceptible pig during a subsequent blood-feeding attempt.


Asunto(s)
Virus de la Fiebre Porcina Africana/fisiología , Fiebre Porcina Africana/transmisión , Insectos Vectores/virología , Muscidae/virología , Fiebre Porcina Africana/virología , Animales , Modelos Teóricos , Sus scrofa , Porcinos
16.
PLoS One ; 15(7): e0230257, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32658910

RESUMEN

Hepatitis E virus is a zoonotic pathogen for which pigs are recognized as the major reservoir in industrialised countries. A multiscale model was developed to assess the HEV transmission and persistence pattern in the pig production sector through an integrative approach taking into account within-farm dynamics and animal movements based on actual data. Within-farm dynamics included both demographic and epidemiological processes. Direct contact and environmental transmission routes were considered along with the possible co-infection with immunomodulating viruses (IMVs) known to modify HEV infection dynamics. Movements were limited to 3,017 herds forming the largest community on the swine commercial network in France and data from the national pig movement database were used to build the contact matrix. Between-herd transmission was modelled by coupling within-herd and network dynamics using the SimInf package. Different introduction scenarios were tested as well as a decrease in the prevalence of IMV-infected farms. After introduction of a single infected gilt, the model showed that the transmission pathway as well as the prevalence of HEV-infected pigs at slaughter age were affected by the type of the index farm, the health status of the population and the type of the infected farms. These outcomes could help design HEV control strategies at a territorial scale based on the assessment of the farms' and network's risk.


Asunto(s)
Hepatitis E/patología , Enfermedades de los Porcinos/patología , Animales , Cruzamiento , Bases de Datos Factuales , Francia/epidemiología , Estado de Salud , Hepatitis E/epidemiología , Hepatitis E/transmisión , Modelos Logísticos , Dinámica Poblacional , Prevalencia , Modelos de Riesgos Proporcionales , Análisis Espacio-Temporal , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología
17.
Vet Microbiol ; 244: 108656, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32402344

RESUMEN

Co-infection by a type 1 modified live vaccine-like strain (MLV1-like) of porcine reproductive and respiratory syndrome virus (PRRSV) and a type 2 porcine circovirus (PCV2) was identified on a French pig farm with post-weaning multisystemic wasting syndrome (PMWS). An in vivo experiment was set up to characterize the virulence level of the MLV1-like strain compared with the parental MLV1 strain, and to assess the impact of PCV2 co-infection on the pathogenicity of both PRRSV strains. Six groups of six pigs each were inoculated only with either one of the two PRRSV strains or with PCV2, or co-inoculated with PCV2 and MLV1 or PCV2 and MLV1-like strains. Six contact pigs were added to each inoculated group to assess viral transmission. The animals were monitored daily for 35 days post-inoculation for clinical symptoms. Blood and nasal swabs were sampled twice a week, and tissue samples were collected during necropsy for viral quantification. Compared to MLV1-infected pigs, animals infected with the MLV1-like strain had increased PRRSV viremia and nasal shedding, a higher viral load in the tonsils, and lymph node hypertrophy at microscopic level. PCV2 co-infection did not influence clinical, virologic or transmission parameters for MLV1, but co-infected MLV1-like/PCV2 pigs had the most severe lung lesions, the highest viremia in contact animals and the highest transmission rate. Our study demonstrated that the MLV1 strain tested was safe when co-inoculated with PCV2 in piglets. However, co-infection by the MLV1-like strain and PCV2 resulted in increased virulence compared with that due to a single infection.


Asunto(s)
Infecciones por Circoviridae/veterinaria , Circovirus/patogenicidad , Coinfección/veterinaria , Coinfección/virología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Animales , Infecciones por Circoviridae/patología , ADN Viral/sangre , Granjas , Francia , Genoma Viral , Síndrome Respiratorio y de la Reproducción Porcina/sangre , Virus del Síndrome Respiratorio y Reproductivo Porcino/clasificación , Organismos Libres de Patógenos Específicos , Porcinos , Carga Viral , Viremia , Virulencia , Esparcimiento de Virus
18.
Epidemics ; 31: 100389, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32146319

RESUMEN

Livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) colonizes livestock animals worldwide, especially pigs and calves. Although frequently carried asymptomatically, LA-MRSA can cause severe infections in humans. It is therefore important to better understand LA-MRSA spreading dynamics within pig farms and over pig movement networks, and to compare different strategies of control and surveillance. For this purpose, we propose a stochastic meta-population model of LA-MRSA spread along the French pig movement network (n = 10,542 farms), combining within- and between-farm dynamics, based on detailed data on breeding practices and pig movements between holdings. We calibrate the model using French epidemiological data. We then identify farm-level factors associated with the spreading potential of LA-MRSA in the network. We also show that, assuming control measures applied in a limited (n = 100) number of farms, targeting farms depending on their centrality in the network is the only way to significantly reduce LA-MRSA global prevalence. Finally, we investigate the scenario of emergence of a new LA-MRSA strain, and find that the farms with the highest indegree would be the best sentinels for a targeted surveillance of such a strain's introduction.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Modelos Teóricos , Infecciones Estafilocócicas/epidemiología , Enfermedades de los Porcinos/epidemiología , Animales , Bovinos , Granjas , Francia/epidemiología , Humanos , Ganado , Prevalencia , Infecciones Estafilocócicas/veterinaria , Porcinos , Enfermedades de los Porcinos/microbiología
19.
Epidemics ; 30: 100369, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31526684

RESUMEN

Hepatitis E virus (HEV) is a zoonotic agent of which domestic pigs have been recognised as the main reservoir in industrialised countries. The great variability in HEV infection dynamics described on different pig farms may be related to the influence of other pathogens, and in particular viruses affecting pigs' immune response. The objective of this study was to develop a multi-pathogen modelling approach to understand the conditions under which HEV spreads and persists on a farrow-to-finish pig farm taking into account the fact that pigs may be co-infected with an intercurrent pathogen. A stochastic individual-based model was therefore designed that combines a population dynamics model, which enables us to take different batch rearing systems into account, with a multi-pathogen model representing at the same time the dynamics of both HEV and the intercurrent pathogen. Based on experimental and field data, the epidemiological parameters of the HEV model varied according to the pig's immunomodulating virus status. HEV spread and persistence was found to be very difficult to control on a farm with a 20-batch rearing system. Housing sows in smaller groups and eradicating immunomodulating pathogens would dramatically reduce the prevalence of HEV-positive livers at slaughter, which would drop from 3.3% to 1% and 0.2% respectively (p-value < 0.01). It would also decrease the probability of HEV on-farm persistence from 0.6 to 0 and 0.34 respectively (p-value < 0.01) on farms with a 7 batch rearing system. A number of farming practices, such as limiting cross-fostering, reducing the size of weaning pens and vaccinating pigs against immunomodulating viruses, were also shown to be pivotal factors for decreasing HEV spread and persistence.


Asunto(s)
Granjas , Hepatitis E/veterinaria , Enfermedades de los Porcinos/epidemiología , Crianza de Animales Domésticos/métodos , Animales , Coinfección , Femenino , Hepatitis E/epidemiología , Hepatitis E/inmunología , Modelos Teóricos , Dinámica Poblacional , Prevalencia , Porcinos/virología , Enfermedades de los Porcinos/virología
20.
Prev Vet Med ; 175: 104866, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31838401

RESUMEN

Hepatitis E virus (HEV) is a zoonotic agent with pigs as the main reservoir in industrialised countries. Recent studies conducted on pig farms, in experimental conditions or through modelling approaches, have led to a better understanding of the spread of HEV on pig farms. The findings have also made it possible to define a set of measures to reduce HEV prevalence and the risk of marketing contaminated products. The objective of this study was to assess the feasibility of a set of HEV control strategies on pig farms. Individual semi-structured interviews were conducted with farmers, veterinarians and farming advisors to collect general data, their level of knowledge of HEV, their opinion on the technical feasibility of certain changes in practices, their perception of the respective responsibilities of the different stakeholders, and their feelings about the importance of the issue, following the framework of the Theory of Planned Behaviour. The interviews made it possible to highlight potential barriers and preferred motivators for the implementation of on-farm risk mitigation strategies. Barriers included lack of knowledge, scientific gaps, perceived inability to control HEV, and low perception of the importance of the issue. Motivators included professional satisfaction, family recognition, and the opportunity to achieve higher quality standards. Three clusters of stakeholders were also identified, with a group of leaders who could help unlock reluctance and disseminate innovations. This type of behavioural approach appeared useful to help risk managers facilitate zoonotic control on pig farms.


Asunto(s)
Crianza de Animales Domésticos/instrumentación , Control de Enfermedades Transmisibles/instrumentación , Agricultores/psicología , Hepatitis E/veterinaria , Enfermedades de los Porcinos/prevención & control , Veterinarios/psicología , Animales , Estudios de Factibilidad , Francia , Hepatitis E/prevención & control , Virus de la Hepatitis E/fisiología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA