Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Vaccine ; 42(18): 3874-3882, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38704249

RESUMEN

Reverse vaccinology (RV) is a significant step in sensible vaccine design. In recent years, many machine learning (ML) methods have been used to improve RV prediction accuracy. However, there are still issues with prediction accuracy and programme accessibility in ML-based RV. This paper presents a supervised ML-based method to classify bacterial protective antigens (BPAgs) and identify the model(s) that consistently perform well for the training dataset. Six ML classifiers are used for testing with physiochemical features extracted from a comprehensive training dataset. Selecting the best performing model from different performance metrics (accuracy, precision, recall, F1-score, and AUC-ROC) has not been easy, because all the metrics has the same importance to predict BPAgs. To fix this issue, we propose a soft and hard ranking model based on multi-criteria decision-making (MCDM) approach for selecting the best performing ML method that classifies BPAgs. First, our proposed model uses homologous proteins (positive and negative samples) from Protegen and Uniprot databases. Second, we applied four strategies of Synthetic Minority Oversampling Technique and Edited Nearest Neighbour (SMOTE-ENN) to handle the data imbalance problem and train the model using ML methods. Third, we consider MCDM-based technique for order preference by similarity to the ideal solution (TOPSIS) method integrated with soft and hard ranking model. The entropy is used to obtain weighted evaluation criteria for ranking the models. Our experimental evaluations show that the proposed method with best performing models (Random Forest and Extreme Gradient Boosting) outperforms compared to existing open-source RV methods using benchmark datasets.


Asunto(s)
Antígenos Bacterianos , Vacunología , Antígenos Bacterianos/inmunología , Vacunología/métodos , Aprendizaje Automático , Humanos , Vacunas Bacterianas/inmunología
2.
Sci Rep ; 13(1): 14593, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670007

RESUMEN

Linear-B cell epitopes (LBCE) play a vital role in vaccine design; thus, efficiently detecting them from protein sequences is of primary importance. These epitopes consist of amino acids arranged in continuous or discontinuous patterns. Vaccines employ attenuated viruses and purified antigens. LBCE stimulate humoral immunity in the body, where B and T cells target circulating infections. To predict LBCE, the underlying protein sequences undergo a process of feature extraction, feature selection, and classification. Various system models have been proposed for this purpose, but their classification accuracy is only moderate. In order to enhance the accuracy of LBCE classification, this paper presents a novel 2-step metaheuristic variant-feature selection method that combines a linear support vector classifier (LSVC) with a Modified Genetic Algorithm (MGA). The feature selection model employs mono-peptide, dipeptide, and tripeptide features, focusing on the most diverse ones. These selected features are fed into a machine learning (ML)-based parallel ensemble classifier. The ensemble classifier combines correctly classified instances from various classifiers, including k-Nearest Neighbor (kNN), random forest (RF), logistic regression (LR), and support vector machine (SVM). The ensemble classifier came up with an impressively high accuracy of 99.3% as a result of its work. This accuracy is superior to the most recent models that are considered to be state-of-the-art for linear B-cell classification. As a direct consequence of this, the entire system model can now be utilised effectively in real-time clinical settings.


Asunto(s)
Antifibrinolíticos , Epítopos de Linfocito B , Secuencia de Aminoácidos , Aminoácidos , Aprendizaje Automático
3.
3 Biotech ; 13(9): 297, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37575599

RESUMEN

Prediction of conformational B-cell epitopes (CBCE) is an essential phase for vaccine design, drug invention, and accurate disease diagnosis. Many laboratorial and computational approaches have been developed to predict CBCE. However, laboratorial experiments are costly and time consuming, leading to the popularity of Machine Learning (ML)-based computational methods. Although ML methods have succeeded in many domains, achieving higher accuracy in CBCE prediction remains a challenge. To overcome this drawback and consider the limitations of ML methods, this paper proposes a novel DL-based framework for CBCE prediction, leveraging the capabilities of deep learning in the medical domain. The proposed model is named Deep Learning-based Temporal Convolutional Neural Network (DL-TCNN), which hybridizes empirical hyper-tuned 1D-CNN and TCN. TCN is an architecture that employs causal convolutions and dilations, adapting well to sequential input with extensive receptive fields. To train the proposed model, physicochemical features are firstly extracted from antigen sequences. Next, the Synthetic Minority Oversampling Technique (SMOTE) is applied to address the class imbalance problem. Finally, the proposed DL-TCNN is employed for the prediction of CBCE. The model's performance is evaluated and validated on a benchmark antigen-antibody dataset. The DL-TCNN achieves 94.44% accuracy, and 0.989 AUC score for the training dataset, 78.53% accuracy, and 0.661 AUC score for the validation dataset; and 85.10% accuracy, 0.855 AUC score for the testing dataset. The proposed model outperforms all the existing CBCE methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA