Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
3.
Sci Rep ; 11(1): 3202, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547371

RESUMEN

Pollinator refuges such as wildflower strips are planted on farms with the goals of mitigating wild pollinator declines and promoting crop pollination services. It is unclear, however, whether or how these goals are impacted by managed honey bee (Apis mellifera L.) hives on farms. We examined how wildflower strips and honey bee hives and/or their interaction influence wild bee communities and the fruit count of two pollinator-dependent crops across 21 farms in the Mid-Atlantic U.S. Although wild bee species richness increased with bloom density within wildflower strips, populations did not differ significantly between farms with and without them whereas fruit counts in both crops increased on farms with wildflower strips during one of 2 years. By contrast, wild bee abundance decreased by 48%, species richness by 20%, and strawberry fruit count by 18% across all farm with honey bee hives regardless of wildflower strip presence, and winter squash fruit count was consistently lower on farms with wildflower strips with hives as well. This work demonstrates that honey bee hives could detrimentally affect fruit count and wild bee populations on farms, and that benefits conferred by wildflower strips might not offset these negative impacts. Keeping honey bee hives on farms with wildflower strips could reduce conservation and pollination services.


Asunto(s)
Abejas/fisiología , Agricultura , Animales , Biodiversidad , Productos Agrícolas/fisiología , Flores/fisiología , Frutas/fisiología , Polinización
4.
Microb Ecol ; 76(2): 453-458, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29290035

RESUMEN

Insect endosymbionts (hereafter, symbionts) can modify plant virus epidemiology by changing the physiology or behavior of vectors, but their role in nonpersistent virus pathosystems remains uninvestigated. Unlike propagative and circulative viruses, nonpersistent plant virus transmission occurs via transient contamination of mouthparts, making direct interaction between symbiont and virus unlikely. Nonpersistent virus transmission occurs during exploratory intracellular punctures with styletiform mouthparts when vectors assess potential host-plant quality prior to phloem feeding. Therefore, we used an electrical penetration graph (EPG) to evaluate plant probing of the cowpea aphid, Aphis craccivora Koch, an important vector of cucurbit viruses, in the presence and absence of two facultative, intracellular symbionts. We tested four isolines of A. craccivora: two isolines were from a clone from black locust (Robinia pseudoacacia L.), one infected with Arsenophonus sp. and one cured, and two derived from a clone from alfalfa (Medicago sativa L.), one infected with Hamiltonella defensa and one cured. We quantified exploratory intracellular punctures, indicated by a waveform potential drop recorded by the EPG, initiation speed and frequency within the initial 15 min on healthy and watermelon mosaic virus-infected pumpkins. Symbiont associations differentially modified exploratory intracellular puncture frequency by aphids, with H. defensa-infected aphids exhibiting depressed probing, and Arsenophonus-infected aphids an increased frequency of probing. Further, there was greater overall aphid probing on virus-infected plants, suggesting that viruses manipulate their vectors to enhance acquisition-transmission rates, independent of symbiont infection. These results suggest facultative symbionts differentially affect plant-host exploration behaviors and potentially nonpersistent virus transmission by vectors.


Asunto(s)
Áfidos/microbiología , Enterobacteriaceae/virología , Insectos Vectores/virología , Virus de Plantas/fisiología , Simbiosis , Animales , Áfidos/fisiología , Bacteriófagos , Enterobacteriaceae/fisiología , Interacciones Huésped-Patógeno , Insectos Vectores/fisiología , Medicago sativa/virología , Enfermedades de las Plantas/virología , Virus de Plantas/patogenicidad , Potyvirus/patogenicidad , Potyvirus/fisiología , Robinia/virología
5.
Environ Entomol ; 44(3): 562-73, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26313961

RESUMEN

The diversity of vectors and fleeting nature of virus acquisition and transmission renders nonpersistent viruses a challenge to manage. We assessed the importance of noncolonizing versus colonizing vectors with a 2-yr survey of aphids and nonpersistent viruses on commercial pumpkin farms. We quantified aphid alightment using pan traps, while testing leaf samples with multiplex RT-PCR targeting cucumber mosaic virus (CMV), zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and papaya ringspot virus (PRSV). Overall, we identified 53 aphid species (3,899 individuals), from which the melon aphid, Aphis gossypii Glover, a pumpkin-colonizing species, predominated (76 and 37% of samples in 2010 and 2011, respectively). CMV and ZYMV were not detected, but WMV and PRSV were prevalent, both regionally (WMV: 28/29 fields, PRSV: 21/29 fields) and within fields (infection rates = 69 and 55% for WMV in 2010 and 2011; 28 and 25% for PRSV in 2010 and 2011). However, early-season samples showed extremely low infection levels, suggesting cucurbit viruses are not seed-transmitted and implicating aphid activity as a causal factor driving virus spread. Interestingly, neither noncolonizer and colonizer alightment nor total aphid alightment were good predictors of virus presence, but community analyses revealed species-specific relationships. For example, cowpea aphid (Aphis craccivora Koch) and spotted alfalfa aphid (Therioaphis trifolii Monell f. maculata) were associated with PRSV infection, whereas the oleander aphid (Aphis nerii Bover de Fonscolombe) was associated with WMV spread within fields. These outcomes highlight the need for tailored management plans targeting key vectors of nonpersistent viruses in agricultural systems.


Asunto(s)
Áfidos/virología , Cucurbita/virología , Potyvirus/aislamiento & purificación , Animales , Insectos Vectores/virología , Estadios del Ciclo de Vida , Enfermedades de las Plantas/virología , Hojas de la Planta
6.
Environ Entomol ; 39(2): 505-12, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20388281

RESUMEN

A micro-cage bioassay was developed to test the effect of slash pine pollen (Pinus elliottii Engelm.) supplementation to a whole onion plant (Allium cepa L. variety Pegasus) diet on thrips (Thysanoptera: Thripidae) reproductive parameters. Frankliniella fusca (Hinds) females were placed on two to three-leaf stage onion seedling under a treatment of either slash pine (Pinus elliottii Engelm.) pollen dusting (a pollen supplement) or no pollen treatment. Adult survival, net oviposition, and offspring produced over a series of ten 2-d intervals were recorded. From these values, l(x), l(x)m(x), and R(0) values were constructed. A trimodal distribution of oviposition was observed with the pollen supplement. Increased oviposition rates led to higher female offspring production per female and to a four-fold increase in F. fusca net reproduction on pollen-treated onions.


Asunto(s)
Dieta , Insectos/fisiología , Oviparidad , Animales , Femenino , Masculino , Cebollas , Pinus , Polen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA