Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Br J Clin Pharmacol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030897

RESUMEN

AIMS: Sertraline is frequently prescribed for mental health conditions in both pregnant and breastfeeding women. According to the limited available data, only small amounts of sertraline are transferred into human milk, yet with a large amount of unexplained interindividual variability. This study aimed to develop a population pharmacokinetic (popPK) model to describe the pharmacokinetics of sertraline during the perinatal period and explain interindividual variability. METHODS: Pregnant women treated with sertraline were enrolled in the multicenter prospective cohort SSRI-Breast Milk study. A popPK model for sertraline maternal plasma and breast milk concentrations was developed and allowed estimating the milk-to-plasma ratio (MPR). An additional fetal compartment allowed cord blood concentrations to be described. Several covariates were tested for significance. Ultimately, model-based simulations allowed infant drug exposure through placenta and breast milk under various conditions to be predicted. RESULTS: Thirty-eight women treated with sertraline were included in the study and provided 89 maternal plasma, 29 cord blood and 107 breast milk samples. Sertraline clearance was reduced by 42% in CYP2C19 poor metabolizers compared to other phenotypes. Doubling milk fat content increased the MPR by 95%. Simulations suggested a median daily infant dosage of 6.9 µg kg-1 after a 50 mg maternal daily dose, representing 0.95% of the weight-adjusted maternal dose. Median cord blood concentrations could range from 3.29 to 33.23 ng mL-1 after maternal daily doses between 25 and 150 mg. CONCLUSIONS: Infant exposure to sertraline, influenced by CYP2C19 phenotype and breast milk fat content, remains low, providing reassurance regarding the use of sertraline during pregnancy and breastfeeding.

2.
Front Public Health ; 12: 1393752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015385

RESUMEN

Introduction: While breastfeeding is recommended, knowledge regarding medicine transfer to human milk and its safety for nursing infants is limited. Only one paper has previously described dimethyl fumarate (DMF) transfer during breastfeeding in two patients at 5 and 6 months postpartum, respectively. The current case report describes maternal pharmacokinetic data of monomethyl fumarate (MMF), the active metabolite of DMF, and infant exposure estimations of MMF at 3 months postpartum. Methods: A 32-year-old Caucasian woman started DMF therapy (120 mg, 2x/day) for multiple sclerosis at 3 months postpartum, after weaning her infant from breastfeeding. On day 99 after birth, the patient collected four milk samples over 24 h after 6 days of treatment at the initial dose. Additionally, a single maternal blood sample was collected to calculate the milk-to-plasma (M/P) ratio. The samples were analyzed using liquid chromatography coupled with the mass spectrometry method. Results: A wide range of measured steady-state concentrations of MMF (5.5-83.5 ng/mL) was observed in human milk samples. Estimated daily infant dosage values for MMF, calculated with 150 and 200 mL/kg/day human milk intake, were 5.76 and 7.68 µg/kg/day, and the relative infant doses were 0.16 and 0.22%. The observed mean M/P ratio was 0.059, similar to the M/P ratio predicted using the empirical Koshimichi model (0.06). Discussion: Combining this case report with the two previously described cases, the estimated infant exposure is low, albeit with relevant intra- and inter-patient variabilities. Research should further focus on infant exposure and safety.


Asunto(s)
Fumaratos , Leche Humana , Humanos , Leche Humana/química , Femenino , Adulto , Lactancia Materna , Recién Nacido , Esclerosis Múltiple/tratamiento farmacológico , Inmunosupresores , Lactante , Maleatos
3.
Biochem Pharmacol ; 227: 116445, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053638

RESUMEN

The maintenance of a highly functional metabolic epithelium in vitro is challenging. Metabolic impairments in primary human hepatocytes (PHHs) over time is primarily due to epithelial-to-mesenchymal transitioning (EMT). The immature hepatoma cell line HepG2 was used as an in vitro model to explore strategies for enhancing the hepatic phenotype. The phenotypic characterization includes measuring the urea cycle, lipid storage, tricarboxylic acid-related metabolites, reactive oxygen species, endoplasmic reticulum calcium efflux, mitochondrial membrane potentials, oxygen consumptions rate, and CYP450 biotransformation capacity. Expression studies were performed with transcriptomics, co-immunoprecipitation and proteomics. CRISPR/Cas9 was also employed to genetically engineer HepG2 cells. After confirming that PHHs develop an EMT phenotype, expression of tankyrase1/2 was found to increase over time. EMT was reverted when blocking tankyrases1/2-dependent poly-ADP-ribosylation (PARylation) activity, by biochemical and genetic perturbation. Wnt/ß-catenin inhibitor XAV-939 blocks tankyrase1/2 and treatment elevated several oxygen-consuming reactions (electron-transport chain, OXHPOS, CYP450 mono-oxidase activity, phase I/II xenobiotic biotransformation, and prandial turnover), suggesting that cell metabolism was enhanced. Glutathione-dependent redox homeostasis was also significantly improved in the XAV-939 condition. Oxygen consumption rate and proteomics experiments in tankyrase1/2 double knockout HepG2 cells then uncovered PARylation as master regulator of aerobic-dependent cell respiration. Furthermore, novel tankyrase1/2-dependent PARylation targets, including mitochondrial DLST, and OGDH, were revealed. This work exposed a new mechanistic framework by linking PARylation to respiration and metabolism, thereby broadening the current understanding that underlies these vital processes. XAV-939 poses an immediate and straightforward strategy to improve aerobic activities, and metabolism, in (immature) cell cultures.

4.
Drug Metab Dispos ; 52(8): 824-835, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38906699

RESUMEN

Asphyxiated neonates often undergo therapeutic hypothermia (TH) to reduce morbidity and mortality. Since both perinatal asphyxia (PA) and TH influence physiology, altered pharmacokinetics (PK) and pharmacodynamics (PD) are expected. Given that TH is the standard of care for PA with moderate to severe hypoxic-ischemic encephalopathy, disentangling the effect of PA versus TH on PK/PD is not possible in clinical settings. However, animal models can provide insights into this matter. The (neonatal) Göttingen Minipig, the recommended strain for nonclinical drug development, was selected as translational model. Four drugs-midazolam (MDZ), fentanyl (FNT), phenobarbital (PHB), and topiramate (TPM)-were intravenously administered under four conditions: control (C), therapeutic hypothermia (TH), hypoxia (H), and hypoxia plus TH (H+TH). Each group included six healthy male neonatal Göttingen Minipigs anesthetized for 24 hours. Blood samples were drawn at 0 (predose) and 0.5, 2, 2.5, 3, 4, 4.5, 6, 8, 12, and 24 hours post drug administration. Drug plasma concentrations were determined using validated bioanalytical assays. The PK parameters were estimated through compartmental and noncompartmental PK analysis. The study showed a statistically significant decrease in FNT clearance (CL; 66% decrease), with an approximately threefold longer half-life (t1/2) in the TH group. The H+TH group showed a 17% reduction in FNT CL, with a 62% longer t1/2 compared with the C group; however, it was not statistically significant. Although not statistically significant, trends toward lower CL and longer t1/2 were observed in the TH and H+TH groups for MDZ and PHB. Additionally, TPM demonstrated a 28% decrease in CL in the H group compared with controls. SIGNIFICANCE STATEMENT: The overarching goal of this study using the neonatal Göttingen Minipig model was to disentangle the effects of systemic hypoxia and TH on PK using four model drugs. Such insights can subsequently be used to inform and develop a physiologically based pharmacokinetic model, which is useful for drug exposure prediction in human neonates.


Asunto(s)
Animales Recién Nacidos , Asfixia Neonatal , Hipotermia Inducida , Midazolam , Porcinos Enanos , Animales , Porcinos , Hipotermia Inducida/métodos , Asfixia Neonatal/terapia , Asfixia Neonatal/tratamiento farmacológico , Masculino , Midazolam/farmacocinética , Fenobarbital/farmacocinética , Fentanilo/farmacocinética , Modelos Animales de Enfermedad , Recién Nacido , Hipoxia-Isquemia Encefálica/terapia , Hipoxia-Isquemia Encefálica/metabolismo , Humanos
5.
Drug Metab Dispos ; 52(7): 614-625, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38653501

RESUMEN

Hepatic impairment, due to liver cirrhosis, decreases the activity of cytochrome P450 enzymes (CYPs). The use of physiologically based pharmacokinetic (PBPK) modeling to predict this effect for CYP substrates has been well-established, but the effect of cirrhosis on uridine-glucuronosyltransferase (UGT) activities is less studied and few PBPK models have been reported. UGT enzymes are involved in primary N-glucuronidation of midazolam and glucuronidation of 1'-OH-midazolam following CYP3A hydroxylation. In this study, Simcyp was used to establish PBPK models for midazolam, its primary metabolites midazolam-N-glucuronide (UGT1A4) and 1'-OH midazolam (CYP3A4/3A5), and the secondary metabolite 1'-OH-midazolam-O-glucuronide (UGT2B7/2B4), allowing to simulate the impact of liver cirrhosis on the primary and secondary glucuronidation of midazolam. The model was verified in noncirrhotic subjects before extrapolation to cirrhotic patients of Child-Pugh (CP) classes A, B, and C. Our model successfully predicted the exposures of midazolam and its metabolites in noncirrhotic and cirrhotic patients, with 86% of observed plasma concentrations within 5th-95th percentiles of predictions and observed geometrical mean of area under the plasma concentration curve between 0 hours to infinity and maximal plasma concentration within 0.7- to 1.43-fold of predictions. The simulated metabolic ratio defined as the ratio of the glucuronide metabolite AUC over the parent compound AUC (AUCglucuronide/AUCparent, metabolic ratio [MR]), was calculated for midazolam-N-glucuronide to midazolam (indicative of UGT1A4 activity) and decreased by 40% (CP A), 48% (CP B), and 75% (CP C). For 1'-OH-midazolam-O-glucuronide to 1'-OH-midazolam, the MR (indicative of UGT2B7/2B4 activity) dropped by 35% (CP A), 51% (CP B), and 64% (CP C). These predicted MRs were corroborated by the observed data. This work thus increases confidence in Simcyp predictions of the effect of liver cirrhosis on the pharmacokinetics of UGT1A4 and UGT2B7/UGT2B4 substrates. SIGNIFICANCE STATEMENT: This article presents a physiologically based pharmacokinetic model for midazolam and its metabolites and verifies the accurate simulation of pharmacokinetic profiles when using the Simcyp hepatic impairment population models. Exposure changes of midazolam-N-glucuronide and 1'-OH-midazolam-O-glucuronide reflect the impact of decreases in UGT1A4 and UGT2B7/2B4 glucuronidation activity in cirrhotic patients. The approach used in this study may be extended to verify the modeling of other uridine glucuronosyltransferase enzymes affected by liver cirrhosis.


Asunto(s)
Glucuronosiltransferasa , Cirrosis Hepática , Midazolam , Modelos Biológicos , Humanos , Midazolam/farmacocinética , Midazolam/metabolismo , Glucuronosiltransferasa/metabolismo , Cirrosis Hepática/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Glucurónidos/metabolismo , Glucurónidos/farmacocinética , Adulto , Anciano , Simulación por Computador
6.
BMJ Paediatr Open ; 8(1)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599799

RESUMEN

INTRODUCTION: Breastfeeding is beneficial for the health of the mother and child. However, at least 50% of postpartum women need pharmacotherapy, and this number is rising due to the increasing prevalence of chronic diseases and pregnancies at a later age. Making informed decisions on medicine use while breastfeeding is often challenging, considering the extensive information gap on medicine exposure and safety during lactation. This can result in the unnecessary cessation of breastfeeding, the avoidance of pharmacotherapy or the off-label use of medicines. The UmbrelLACT study aims to collect data on human milk transfer of maternal medicines, child exposure and general health outcomes. Additionally, the predictive performance of lactation and paediatric physiologically based pharmacokinetic (PBPK) models, a promising tool to predict medicine exposure in special populations, will be evaluated. METHODS AND ANALYSIS: Each year, we expect to recruit 5-15 breastfeeding mothers using pharmacotherapy via the University Hospitals Leuven, the BELpREG project (pregnancy registry in Belgium) or external health facilities. Each request and compound will be evaluated on relevance (ie, added value to available scientific evidence) and feasibility (including access to analytical assays). Participants will be requested to complete at least one questionnaire on maternal and child's general health and collect human milk samples over 24 hours. Optionally, two maternal and one child's blood samples can be collected. The maternal medicine concentration in human milk will be determined along with the estimation of the medicine intake (eg, daily infant dose and relative infant dose) and systemic exposure of the breastfed child. The predictive performance of PBPK models will be assessed by comparing the observed concentrations in human milk and plasma to the PBPK predictions. ETHICS AND DISSEMINATION: This study has been approved by the Ethics Committee Research UZ/KU Leuven (internal study number S67204). Results will be published in peer-reviewed journals and presented at (inter)national scientific meetings. TRIAL REGISTRATION NUMBER: NCT06042803.


Asunto(s)
Lactancia Materna , Leche Humana , Lactante , Embarazo , Femenino , Humanos , Niño , Lactancia , Madres , Periodo Posparto
7.
Nucl Med Biol ; 132-133: 108906, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38518400

RESUMEN

BACKGROUND: The C-X-C chemokine receptor type 4 (CXCR4) is overexpressed in many cancers, e.g. multiple myeloma and acute leukemia, yet solely [68Ga]PentixaFor is used for clinical PET imaging. The aim of this study was to develop and assess a second generation Al18F-labeled D-amino acid peptide based on the viral macrophage inflammatory protein II for CXCR4 targeted molecular imaging. METHODS: We designed a library of monomer and multimer constructs and evaluated their binding affinity for human and mouse CXCR4. Based on these results, we selected the best vector molecule for development of an Al18F-labeled ligand, [18F]AlF-NOTA-2xDV1(c11sc12s), which was further evaluated in a cell-based binding assay to assess its binding properties and specificity for CXCR4. Next, pharmacokinetics and tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) were evaluated in naïve mice and mice with xenografts derived from U87.CXCR4 cells. Finally, we performed an imaging study in a non-human primate to assess the in vivo distribution of this novel radioligand in a species closely related to humans. RESULTS: The lead ligand AlF-NOTA-2xDV1(c11sc12s) showed six-fold higher affinity for human CXCR4 compared to Ga-Pentixafor. The corresponding radiotracer was obtained in a good radiochemical yield of 40.1 ± 13.5 % (n = 4) and apparent molar activity of 20.4 ± 3.3 MBq/nmol (n = 4) after optimization. In U87.CD4.CXCR4 cell binding assays, the total bound fraction of [18F]AlF-NOTA-(2×)DV1(c11sc12s) was 32.4 ± 1.8 %. This fraction could be reduced by 82.5 % in the presence of 75 µM AMD3100. In naïve mice, [18F]AlF-NOTA-2xDV1(c11sc12s) accumulated in organs expressing mouse CXCR4, e.g. the liver (SUVmean (mean standardized uptake value) 75 min p.i. 11.7 ± 0.6), which was blockable by co-injecting AMD3100 (5 mg/kg). In U87.CXCR4 xenografted tumor mice, the tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) remained low (SUVmean 0.5 ± 0.1), but was reduced by co-administration of AMD3100. Surprisingly, [18F]AlF-NOTA-2xDV1(c11sc12s) exhibited a similar biodistribution in a non-human primate as in mice indicating off-target binding of [18F]AlF-NOTA-2xDV1(c11sc12s) in liver tissue. We confirmed that [18F]AlF-NOTA-2xDV1(c11sc12s) is taken up by hepatocytes using in vitro studies and that the uptake can be blocked with AMD3100 and rifampicin, a potent organic anion-transporting-polypeptide (OATP)1B1 and OATP1B3 inhibitor. CONCLUSION: The second generation D-peptide AlF-NOTA-2xDV1(c11sc12s) showed high affinity for human CXCR4 and the corresponding radiotracer was produced in good radiochemical yields. However, [18F]AlF-NOTA-2xDV1(c11sc12s) is not specific for CXCR4 and is also a substrate for OATP1B1 and/or OATP1B3, known to mediate hepatic uptake. Therefore, D-amino acid peptides, based on the viral macrophage inflammatory protein II, are not the prefered vector molecule for the development of CXCR4 targeting molecular imaging tools.


Asunto(s)
Radioisótopos de Flúor , Receptores CXCR4 , Receptores CXCR4/metabolismo , Animales , Ratones , Humanos , Radioisótopos de Flúor/química , Péptidos/química , Péptidos/farmacocinética , Línea Celular Tumoral , Distribución Tisular , Marcaje Isotópico , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Radioquímica
8.
Pharmaceutics ; 16(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276498

RESUMEN

This commentary further reflects on the paper of De Sutter et al. on predicting volume of distribution in neonates, and the performance of physiologically based pharmacokinetic models We hereby stressed the add on value to collaborate on real world data to further close this knowledge gap. We illustrated this by weight distribution characteristics in breastfed (physiology) and in asphyxiated (pathophysiology), with additional reflection on their kidney and liver function.

9.
AAPS J ; 26(1): 4, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38051395

RESUMEN

The objective was to apply a population model to describe the time course and variability of serum creatinine (sCr) in (near)term neonates with moderate to severe encephalopathy during and after therapeutic hypothermia (TH). The data consisted of sCr observations up to 10 days of postnatal age in neonates who underwent TH during the first 3 days after birth. Available covariates were birth weight (BWT), gestational age (GA), survival, and acute kidney injury (AKI). A previously published population model of sCr kinetics in neonates served as the base model. This model predicted not only sCr but also the glomerular filtration rate normalized by its value at birth (GFR/GFR0). The model was used to compare the TH neonates with a reference full term non-asphyxiated population of neonates. The estimates of the model parameters had good precision and showed high between subject variability. AKI influenced most of the estimated parameters denoting a strong impact on sCr kinetics and GFR. BWT and GA were not significant covariates. TH transiently increased [Formula: see text] in TH neonates over the first days compared to the reference group. Asphyxia impacted not only GFR, but also the [Formula: see text] synthesis rate. We also observed that AKI neonates exhibit a delayed onset of postnatal GFR increase and have a higher [Formula: see text] synthesis rate compared to no-AKI patients. Our findings show that the use of [Formula: see text] as marker of renal function in asphyxiated neonates treated with TH to guide dose selection for renally cleared drugs is challenging, while we captured the postnatal sCr patterns in this specific population.


Asunto(s)
Lesión Renal Aguda , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Humanos , Recién Nacido , Creatinina , Hipoxia-Isquemia Encefálica/terapia , Tasa de Filtración Glomerular , Lesión Renal Aguda/terapia
10.
Pharmaceutics ; 15(11)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-38004596

RESUMEN

Physiologically based pharmacokinetic (PBPK) modelling is a bottom-up approach to predict pharmacokinetics in specific populations based on population-specific and medicine-specific data. Using an illustrative approach, this review aims to highlight the challenges of incorporating physiological data to develop postpartum, lactating women and breastfed infant PBPK models. For instance, most women retain pregnancy weight during the postpartum period, especially after excessive gestational weight gain, while breastfeeding might be associated with lower postpartum weight retention and long-term weight control. Based on a structured search, an equation for human milk intake reported the maximum intake of 153 mL/kg/day in exclusively breastfed infants at 20 days, which correlates with a high risk for medicine reactions at 2-4 weeks in breastfed infants. Furthermore, the changing composition of human milk and its enzymatic activities could affect pharmacokinetics in breastfed infants. Growth in breastfed infants is slower and gastric emptying faster than in formula-fed infants, while a slower maturation of specific metabolizing enzymes in breastfed infants has been described. The currently available PBPK models for these populations lack structured systematic acquisition of population-specific data. Future directions include systematic searches to fully identify physiological data. Following data integration as mathematical equations, this holds the promise to improve postpartum, lactation and infant PBPK models.

11.
Drug Metab Dispos ; 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37879848

RESUMEN

Physiologically-based pharmacokinetic (PBPK) modeling has become the established method for predicting human pharmacokinetics (PK) and drug-drug interactions (DDI). The number of drugs cleared by non-CYP enzyme metabolism has increased steadily and to date, there is no consolidated overview of PBPK modeling for drugs cleared by non-CYP enzymes. This review aims to describe the state-of-the-art for PBPK modeling for drugs cleared via non-CYP enzymes, to identify successful strategies, to describe gaps and to provide suggestion to overcome them. To this end, we conducted a detailed literature search and found 58 articles published before the 1st of January 2023 containing 95 examples of clinical PBPK models for 62 non-CYP enzyme substrates. Reviewed articles covered the drug clearance by uridine 5'-diphospho-glucuronosyltransferases (UGTs), aldehyde oxidase (AO), flavin-containing monooxygenases (FMOs), sulfotransferases (SULTs) and carboxylesterases (CES), with UGT2B7, UGT1A9, CES1, FMO3 and AO being the enzymes most frequently involved. In vitro-in vivo extrapolation (IVIVE) of intrinsic clearance and the bottom-up PBPK modeling involving non-CYP enzymes remains challenging. We observed that the middle-out modeling approach was applied in 80% of the cases, with metabolism parameters optimized in 73% of the models. Our review could not identify a standardized approach used for model optimization based on clinical data, with manual optimization employed most frequently. Successful development of models for UGT2B7, UGT1A9, CES1, and FMO3 substrates provides a foundation for other drugs metabolized by these enzymes and guides the way forward in creating PBPK models for other enzymes in these families. Significance Statement Our review charts the rise of PBPK modeling for drugs cleared by non-CYP enzymes. Analyzing 58 articles and 62 non-CYP enzyme substrates, we found that UGTs, AO, FMOs, SULTs, and CES were the main enzyme families involved and that UGT2B7, UGT1A9, CES1, FMO3 and AO are the individual enzymes with the strongest PBPK modeling precedents. Approaches established for these enzymes can now be extended to additional substrates and to drugs metabolized by enzymes that are similarly well characterized.

12.
Stem Cells ; 41(11): 1076-1088, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37616601

RESUMEN

Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) hold great promise for liver disease modeling, drug discovery, and drug toxicity screens. Yet, several hurdles still need to be overcome, including among others decrease in the cost of goods to generate HLCs and automation of the differentiation process. We here describe that the use of an automated liquid handling system results in highly reproducible HLC differentiation from hPSCs. This enabled us to screen 92 chemicals to replace expensive growth factors at each step of the differentiation protocol to reduce the cost of goods of the differentiation protocol by approximately 79%. In addition, we also evaluated several recombinant extracellular matrices to replace Matrigel. We demonstrated that differentiation of hPSCs on Laminin-521 using an optimized small molecule combination resulted in HLCs that were transcriptionally identical to HLCs generated using the growth factor combinations. In addition, the HLCs created using the optimized small molecule combination secreted similar amounts of albumin and urea, and relatively low concentrations of alfa-fetoprotein, displayed similar CYP3A4 functionality, and a similar drug toxicity susceptibility as HLCs generated with growth factor cocktails. The broad applicability of the new differentiation protocol was demonstrated for 4 different hPSC lines. This allowed the creation of a scalable, xeno-free, and cost-efficient hPSC-derived HLC culture, suitable for high throughput disease modeling and drug screenings, or even for the creation of HLCs for regenerative therapies.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Diferenciación Celular , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
13.
Expert Opin Drug Metab Toxicol ; 19(7): 461-477, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37470686

RESUMEN

INTRODUCTION: Perinatal asphyxia (PA) still causes significant morbidity and mortality. Therapeutic hypothermia (TH) is the only effective therapy for neonates with moderate to severe hypoxic-ischemic encephalopathy after PA. These neonates need additional pharmacotherapy, and both PA and TH may impact physiology and, consequently, pharmacokinetics (PK) and pharmacodynamics (PD). AREAS COVERED: This review provides an overview of the available knowledge in PubMed (until November 2022) on the pathophysiology of neonates with PA/TH. In vivo pig models for this setting enable distinguishing the effect of PA versus TH on PK and translating this effect to human neonates. Available asphyxia pig models and methodological considerations are described. A summary of human neonatal PK of supportive pharmacotherapy to improve neurodevelopmental outcomes is provided. EXPERT OPINION: To support drug development for this population, knowledge from clinical observations (PK data, real-world data on physiology), preclinical (in vitro and in vivo (minipig)) data, and molecular and cellular biology insights can be integrated into a predictive physiologically-based PK (PBPK) framework, as illustrated by the I-PREDICT project (Innovative physiology-based pharmacokinetic model to predict drug exposure in neonates undergoing cooling therapy). Current knowledge, challenges, and expert opinion on the future directions of this research topic are provided.


Asunto(s)
Asfixia , Hipotermia Inducida , Humanos , Animales , Recién Nacido , Porcinos , Modelos Biológicos , Porcinos Enanos , Desarrollo de Medicamentos , Farmacocinética
15.
Expert Opin Drug Metab Toxicol ; 19(5): 269-283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37269321

RESUMEN

INTRODUCTION: Despite many research efforts, current data on the safety of medicines during breastfeeding are either fragmented or lacking, resulting in restrictive labeling of most medicines. In the absence of pharmacoepidemiologic safety studies, risk estimation for breastfed infants is mainly derived from pharmacokinetic (PK) information on medicine. This manuscript provides a description and a comparison of the different methodological approaches that can yield reliable information on medicine transfer into human milk and the resulting infant exposure. AREA COVERED: Currently, most information on medicine transfer in human milk relies on case reports or traditional PK studies, which generate data that can hardly be generalized to the population. Some methodological approaches, such as population PK (popPK) and physiologically based PK (PBPK) modeling, can be used to provide a more complete characterization of infant medicine exposure through human milk and simulate the most extreme situations while decreasing the burden of sampling in breastfeeding women. EXPERT OPINION: PBPK and popPK modeling are promising approaches to fill the gap in knowledge of medicine safety in breastfeeding, as illustrated with our escitalopram example.


Asunto(s)
Lactancia Materna , Leche Humana , Lactante , Femenino , Humanos , Modelos Biológicos
16.
Pharmaceutics ; 15(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37242712

RESUMEN

Women commonly take medication during lactation. Currently, there is little information about the exposure-related safety of maternal medicines for breastfed infants. The aim was to explore the performance of a generic physiologically-based pharmacokinetic (PBPK) model to predict concentrations in human milk for ten physiochemically diverse medicines. First, PBPK models were developed for "non-lactating" adult individuals in PK-Sim/MoBi v9.1 (Open Systems Pharmacology). The PBPK models predicted the area-under-the-curve (AUC) and maximum concentrations (Cmax) in plasma within a two-fold error. Next, the PBPK models were extended to include lactation physiology. Plasma and human milk concentrations were simulated for a three-months postpartum population, and the corresponding AUC-based milk-to-plasma (M/P) ratios and relative infant doses were calculated. The lactation PBPK models resulted in reasonable predictions for eight medicines, while an overprediction of human milk concentrations and M/P ratios (>2-fold) was observed for two medicines. From a safety perspective, none of the models resulted in underpredictions of observed human milk concentrations. The present effort resulted in a generic workflow to predict medicine concentrations in human milk. This generic PBPK model represents an important step towards an evidence-based safety assessment of maternal medication during lactation, applicable in an early drug development stage.

17.
Pharm Res ; 40(7): 1723-1734, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37258948

RESUMEN

PURPOSE: Colistin is an antibiotic which is increasingly used as a last-resort therapy in critically-ill patients with multidrug resistant Gram-negative infections. The purpose of this study was to evaluate the mechanisms underlying colistin's pharmacokinetic (PK) behavior and to characterize its hepatic metabolism. METHODS: In vitro incubations were performed using colistin sulfate with rat liver microsomes (RLM) and with rat and human hepatocytes (RH and HH) in suspension. The uptake of colistin in RH/HH and thefraction of unbound colistin in HH (fu,hep) was determined. In vitro to in vivo extrapolation (IVIVE) was employed to predict the hepatic clearance (CLh) of colistin. RESULTS: Slow metabolism was detected in RH/HH, with intrinsic clearance (CLint) values of 9.34± 0.50 and 3.25 ± 0.27 mL/min/kg, respectively. Assuming the well-stirred model for hepatic drug elimination, the predicted rat CLh was 3.64± 0.22 mL/min/kg which could explain almost 70% of the reported non-renal in vivo clearance. The predicted human CLh was 91.5 ± 8.83 mL/min, which was within two-fold of the reported plasma clearance in healthy volunteers. When colistin was incubated together with the multidrug resistance-associated protein (MRP/Mrp) inhibitor benzbromarone, the intracellular accumulation of colistin in RH/HH increased significantly. CONCLUSION: These findings indicate the major role of hepatic metabolism in the non-renal clearance of colistin, while MRP/Mrp-mediated efflux is involved in the hepatic disposition of colistin. Our data provide detailed quantitative insights into the hereto unknown mechanisms responsible for non-renal elimination of colistin.


Asunto(s)
Colistina , Eliminación Hepatobiliar , Humanos , Ratas , Animales , Colistina/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Microsomas Hepáticos/metabolismo , Tasa de Depuración Metabólica
18.
Front Pediatr ; 11: 1163100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215599

RESUMEN

Animal models provide useful information on mechanisms in human disease conditions, but also on exploring (patho)physiological factors affecting pharmacokinetics, safety, and efficacy of drugs in development. Also, in pediatric patients, nonclinical data can be critical for better understanding the disease conditions and developing new drug therapies in this age category. For perinatal asphyxia (PA), a condition defined by oxygen deprivation in the perinatal period and possibly resulting in hypoxic ischemic encephalopathy (HIE) or even death, therapeutic hypothermia (TH) together with symptomatic drug therapy, is the standard approach to reduce death and permanent brain damage in these patients. The impact of the systemic hypoxia during PA and/or TH on drug disposition is largely unknown and an animal model can provide useful information on these covariates that cannot be assessed separately in patients. The conventional pig is proven to be a good translational model for PA, but pharmaceutical companies do not use it to develop new drug therapies. As the Göttingen Minipig is the commonly used pig strain in nonclinical drug development, the aim of this project was to develop this animal model for dose precision in PA. This experiment consisted of the instrumentation of 24 healthy male Göttingen Minipigs, within 24 h of partus, weighing approximately 600 g, to allow the mechanical ventilation and the multiple vascular catheters inserted for maintenance infusion, drug administration and blood sampling. After premedication and induction of anesthesia, an experimental protocol of hypoxia was performed, by decreasing the inspiratory oxygen fraction (FiO2) at 15%, using nitrogen gas. Blood gas analysis was used as an essential tool to evaluate oxygenation and to determine the duration of the systemic hypoxic insult to approximately 1 h. The human clinical situation was mimicked for the first 24 h after birth in case of PA, by administering four compounds (midazolam, phenobarbital, topiramate and fentanyl), frequently used in a neonatal intensive care unit (NICU). This project aimed to develop the first neonatal Göttingen Minipig model for dose precision in PA, allowing to separately study the effect of systemic hypoxia versus TH on drug disposition. Furthermore, this study showed that several techniques that were thought to be challenging or even impossible in these very small animals, such as endotracheal intubation and catheterization of several veins, are feasible by trained personnel. This is relevant information for laboratories using the neonatal Göttingen Minipig for other disease conditions or drug safety testing.

19.
Br J Clin Pharmacol ; 89(9): 2726-2738, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37005335

RESUMEN

AIMS: The combination of daptomycin and ceftaroline used as salvage therapy is associated with higher survival and decreased clinical failure in complicated methicillin-resistant Staphylococcus aureus (MRSA) infections that are resistant to standard MRSA treatment. This study aimed to evaluate dosing regimens for coadministration of daptomycin and ceftaroline in special populations including paediatrics, renally impaired (RI), obese and geriatrics that generate sufficient coverage against daptomycin-resistant MRSA. METHODS: Physiologically based pharmacokinetic models were developed from pharmacokinetic studies of healthy adults, geriatric, paediatric, obese and RI patients. The predicted profiles were used to evaluate joint probability of target attainment (PTA), as well as tissue-to-plasma ratios. RESULTS: The adult dosing regimens of 6 mg/kg every (q)24h or q48h daptomycin and 300-600 mg q12h ceftaroline fosamil by RI categories achieved ≥90% joint PTA when the minimum inhibitory concentrations in the combination are at or below 1 and 4 µg/mL against MRSA. In paediatrics, wherein there is no recommended daptomycin dosing regimen for S. aureus bacteraemia, ≥90% joint PTA is achieved when the minimum inhibitory concentrations in the combination are up to 0.5 and 2 µg/mL for standard paediatric dosing regimens of 7 mg/kg q24h daptomycin and 12 mg/kg q8h ceftaroline fosamil. Model predicted tissue-to-plasma ratios of 0.3 and 0.7 in the skin and lung, respectively, for ceftaroline and 0.8 in the skin for daptomycin. CONCLUSION: Our work illustrates how physiologically based pharmacokinetic modelling can inform appropriate dosing of adult and paediatric patients and thereby enable prediction of target attainment in the patients during multitherapies.


Asunto(s)
Bacteriemia , Daptomicina , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Adulto , Humanos , Niño , Anciano , Daptomicina/farmacocinética , Antibacterianos , Bacteriemia/tratamiento farmacológico , Staphylococcus aureus , Infecciones Estafilocócicas/tratamiento farmacológico , Cefalosporinas/farmacocinética , Cefalosporinas/uso terapéutico , Pruebas de Sensibilidad Microbiana , Ceftarolina
20.
Clin Pharmacol Ther ; 113(6): 1346-1358, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37017611

RESUMEN

Failure to perform adequate dose adjustment in patients with liver cirrhosis may be associated with increased toxicity. We compared the prediction of area under the curve (AUC) and clearance for the six compounds of the Basel phenotyping cocktail (caffeine, efavirenz, flurbiprofen, omeprazole, metoprolol, and midazolam) using a well-known physiology-based pharmacokinetic approach (physiologically-based pharmacokinetic [PBPK] approach, Simcyp) and a novel top-down method based on the systemic clearance in healthy volunteers adjusted for markers of liver and renal dysfunction ("top-down approach"). With few exceptions, plasma concentration-time curves were accurately predicted by the PBPK approach. In comparison to the measured AUC and clearance of these drugs in patients with liver cirrhosis and healthy controls, except for efavirenz, the estimates of both approaches were within two standard deviations of the mean for total and free drug concentrations. For both approaches, a correction factor for dose adjustment in patients with liver cirrhosis could be calculated for the drugs administered. AUCs calculated using the adjusted doses were comparable to the AUCs measured in control subjects, with slightly more accurate predictions generated by the PBPK approach. For drugs with a free fraction < 50%, predictions using free drug concentrations were more accurate than with total drug concentrations. In conclusion, both methods provided good qualitative predictions of the changes by liver cirrhosis in the pharmacokinetics of the six compounds investigated. The top-down approach is easier to implement but the PBPK approach predicted changes in drug exposure more accurately than the top-down approach and provided reliable estimates for plasma concentrations.


Asunto(s)
Alquinos , Cirrosis Hepática , Humanos , Cirrosis Hepática/tratamiento farmacológico , Benzoxazinas , Ciclopropanos , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA