Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Food Res Int ; 193: 114847, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39160052

RESUMEN

Rice bran is abundant in dietary fiber and is often referred to as the seventh nutrient, recognized for its numerous health benefits. The objective of the current study is to investigate the extraction of both soluble and insoluble dietary fiber from defatted rice bran (DRB) using an alkali-enzymatic treatment through response surface methodology. The independent variables like substrate percentage (5-30 %), enzyme concentration (1-50 µL/g), and treatment time (2-12 h) and dependent variables were the yield of soluble and insoluble DF. The highest extraction yield was observed with alkali enzyme concentration (50 µL/g) treatment, resulting in 2 % SDF and 59.5 % IDF at 24 h of extraction. The results indicate that cellulase-AC enzyme aids in the hydrolysis of higher polysaccharides, leading to structural alterations in DRB and an increase in DF yield. Furthermore, the disruption of intra-molecular hydrogen bonding between oligosaccharides and the starch matrix helps to increase in DF yield, was also confirmed through FTIR and SEM. The extracted DF soluble and insoluble was then used to develop rice porridge. Sensory evaluation using fuzzy logic analysis reported the highest scores for samples containing 0.5 % insoluble DF and 1.25 % soluble DF.


Asunto(s)
Álcalis , Fibras de la Dieta , Oryza , Oryza/química , Fibras de la Dieta/análisis , Álcalis/química , Solubilidad , Hidrólisis , Espectroscopía Infrarroja por Transformada de Fourier , Celulasa/metabolismo , Celulasa/química , Manipulación de Alimentos/métodos , Cristalización
2.
Food Chem X ; 23: 101694, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39184314

RESUMEN

Microalgae have emerged as a storehouse of biologically active components having numerous health benefits that can be used in the formulation of nutraceuticals, and functional foods, for human consumption. Among these biologically active components, functional triacylglycerols are increasingly attracting the attention of researchers owing to their beneficial characteristics. Microalgae are excellent sources of triacylglycerol containing omega-3 and omega-6 fatty acids and can be used by the vegan population as a replacement for fish oil. The functional triacylglycerols extracted using conventional processes have various drawbacks resulting in lower yield and inferior quality products. The non-thermal technologies are emerging as user-friendly and environment-friendly technologies that intensify the yield of final products and maintain the high purity of extracted products that can be used in food, cosmetic, pharmaceutical, and nutraceutical applications. The present review focuses on major non-thermal technologies that can probably be used for the extraction of high-quality functional triacylglycerols from microalgae.

3.
Int J Biol Macromol ; 275(Pt 1): 133566, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960264

RESUMEN

The present review elaborates on the details of the enzyme, its structure, specificity, and the mechanism of action of selected enzymes as well as structural changes and loss or gain of activity after non-thermal treatments for food-based applications. Enzymes are biological catalysts found in various systems such as plants, animals, and microorganisms. Most of the enzymes have their optimum pH, temperature, and substrate or group of substrates. The conformational modification of enzymes either increases or decreases the rate of reaction at different pH, and temperature conditions. Enzymes are modified by different techniques to enhance the activity of enzymes for their commercial applications mainly due to the high cost of enzymes, stability, and difficulties that occur during the use of enzymes in different conditions. On the opposite, enzyme inactivation provides its application to extend the shelf life of fruits and vegetables by denaturation and partial inactivation of enzymes. Hence, the activation and inactivation of enzymes are studied by non-thermal techniques in both the model and the food system. The highly reactive species generated during non-thermal techniques cause chemical and structural modification. The enzyme modifications depend on the type and source of the enzyme, type of technique, and the parameters used.


Asunto(s)
Enzimas , Enzimas/química , Enzimas/metabolismo , Estabilidad de Enzimas , Temperatura , Concentración de Iones de Hidrógeno , Animales , Alimentos , Activación Enzimática
4.
Food Res Int ; 187: 114418, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763668

RESUMEN

Interest in exploring alternative starch sources like finger millet is rising due to wide starch applications. However, native starch often lacks desired qualities, including rheological properties. Modification is thus necessary for specific end uses. Plasma treatment as a greener and sustainable method for starch modification was therefore, studied for its ability to impact rheological properties of finger millet starch (FMS). Considerable changes in the rheological properties on FMS was noted, a significant decrease and increase (p < 0.05) in the peak viscosity (from 3.35 to 0.553 Pa.s) and paste clarity respectively was observed, indicating occurrence of depolymerization. However, intermediate plasma-treated samples (200 V) observed a decrease in paste clarity attributed to aggregate formation and cross-linking. Cross-linking was also confirmed by findings of frequency sweep where a continuous decrease in G' values of plasma treated FMS gel was interrupted by sudden increase. Despite depolymerization causing alteration of rheological behaviour such as decrease in shear thinning properties, gel strength observed a contradictory increase. This was attributed to incorporation of functional group and absence of shear responsible for network formation giving higher gel strength to FMS gels. This is elaborated in detail in the study. The study thus concluded that cold plasma significantly impacted all the rheological properties of the FMS and hence can prove to be beneficial for modification of starch rheological parameters.


Asunto(s)
Eleusine , Geles , Gases em Plasma , Reología , Almidón , Almidón/química , Gases em Plasma/química , Viscosidad , Eleusine/química , Geles/química , Presión Atmosférica , Manipulación de Alimentos/métodos
5.
Int J Biol Macromol ; 268(Pt 1): 131615, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631580

RESUMEN

This research was conducted to evaluate the effects of cold plasma (CP) on finger millet starch (FMS). FMS was exposed to partially ionized gas at varying voltages (170, 200, and 230 Volt) for varied time (10, 20, and 30 mins). The impact of treatment was studied using physico-chemical, and functional properties, and the mechanisms of starch modification occurring were stated. A significant reduction in the degree of polymerization was noticed based on parameters like reducing sugar, amylose content, solubility, and molecular weight. However, in certain voltage and time combinations, crosslinking was also confirmed by analysis such as XRD, FTIR, DSC, etc. The properties of starch were altered such as remarkable increase in water solubility by 6.7 times for highest voltage and longest time (230 V/30 min) was registered. NMR data suggested valuable findings- oxidation of OH group at C6 position of starch led to formation of carbonyl group followed by carboxyl group. NMR also showed a decrease in OH protons confirming crosslinking and hence all these analyses helped to conclude findings about the quality changes using CP. It was observed that the highest voltage and considerably longer exposure time of 20 and 30 min induced significant changes in the FMS.


Asunto(s)
Amilosa , Eleusine , Gases em Plasma , Solubilidad , Almidón , Almidón/química , Gases em Plasma/química , Eleusine/química , Amilosa/química , Peso Molecular , Espectroscopía Infrarroja por Transformada de Fourier
6.
Food Res Int ; 177: 113920, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225121

RESUMEN

The current study aimed to investigate the influence of pin-to-plate atmospheric cold plasma treatment (ACP) on the microbial decontamination efficacy, physical (water activity, color, texture), and bioactive (total phenolic and anti-oxidant capacity, volatile oil profile) of three major spices cinnamon, black pepper, and fennel at three different voltages (170, 200, 230 V) and exposure time (5, 10, 15 min). The surface etching and oxidative reactions of cold plasma is anticipated to cause microbial decontamination of the spices. In accordance with this, the ACP treatment significantly reduced the yeast and mold count of cinnamon, black pepper, and fennel, resulting in 1.3 Log CFU/g, 1.1 Log CFU/g, and 1.0 Log CFU/g, respectively even at the lowest treatment at 170 V-5 min. While at the highest treatment of 230 V-15 min, complete decontamination in all the samples was observed due to the plasma-induced microbial cell disruption. The water activity of samples reduced post-treatment 0.69 ± 0.02 to 0.51 ± 0.03 for cinnamon, 0.61 ± 0.03 to 0.49 ± 0.01 for pepper, and 0.60 ± 0.02 to 0.43 ± 0.02 for fennel which further reassures better microbial stability. The color and textural properties were significantly unaffected (p > 0.05) preserving the fresh-like attributes. The total phenolic content was increased for cinnamon (2.26 %), black pepper (0.11 %), and fennel (0.33 %) after plasma treatment at 230 V-15 min due to the cold plasma surface etching phenomenon. However, the essential oil composition revealed no significant variation in all three spices' control and treated samples. Thus, the study proves the potential of the atmospheric pressure cold plasma for the complete decontamination of the investigated spices (cinnamon, pepper, fennel) without remarkable changes in the volatile oil profile.


Asunto(s)
Foeniculum , Aceites Volátiles , Piper nigrum , Gases em Plasma , Gases em Plasma/farmacología , Cinnamomum zeylanicum , Agua , Aceites Volátiles/farmacología
7.
Food Res Int ; 173(Pt 2): 113444, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803769

RESUMEN

The present work aimed to study the influence of atmospheric pressure pin-to-plate cold plasma on the physicochemical (pH, moisture, and amylose content), functional (water & oil binding capacity, solubility & swelling power, paste clarity on storage, pasting), powder flow, thermal and structural (FTIR, XRD, and SEM) characteristics at an input voltage of 170-230 V for 5-15 min. The starch surface modification by cold plasma was seen in the SEM images which cause the surge in WBC (1.54 g/g to 1.93 g/g), OBC (2.22 g/g to 2.79 g/g), solubility (3.05-5.38% at 70 °C; 37.11-52.98% at 90 °C) and swelling power (5.39-7.83% at 70 °C; 25.67-35.33% at 90 °C) of starch. Reduction in the amylose content (27.82% to 25.07%) via plasma-induced depolymerization resists the retrogradation tendency, thereby increasing the paste clarity (up to Ì´ 39%) during the 5 days of refrigerated storage. However, the paste viscosity is reduced after cold plasma treatment yielding low-strength starch pastes. The relative crystallinity of starch increased (37.35% to 45.36%) by the plasma-induced fragmented starch granules which would aggregate and broaden the gelatinization temperature, but these starch fragments reduced the gelatinization enthalpy. The fundamental starch structure is conserved as seen in FTIR spectra. Thus, cold plasma aids in the production of soluble, low-viscous, stable, and clear paste-forming depolymerized proso-millet starch.


Asunto(s)
Panicum , Gases em Plasma , Almidón/química , Amilosa/química , Mijos , Panicum/química
8.
J Food Sci Technol ; 60(10): 2549-2556, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37599840

RESUMEN

The current work focused on the effect of repetitive frying on the physicochemical characteristics of palm oil (PO)and sesame oil (SO) during the preparation of french fries by deep fat frying. A total of 16 frying cycles were carried out and the effect on various parameters was evaluated. The repetitive frying caused higher damage to sesame oil as compared with PO as observed from changes in FFA and PV which increased to 0.63 ± 0.12, 1.31 ± 0.16%, and 2.71 ± 0.02, 7.21 ± 0.01 meq/kg from an initial value of 0.28 ± 0.00, 0.93 ± 0.16% and 0.19 ± 0.00, 0.71 ± 0.00 meq/kg for PO, SO respectively. The fatty acid composition of SO showed significant change with a decrease in linoleic acid and oleic acid content from 42.7 ± 0.01 to 28.1 ± 0.03 and 36.2 ± 0.01 to 25.1 ± 0.01 after 16 frying cycles respectively. The oleic acid content of PO was less affected it decreased from an initial value of 42.4 ± 0.01 to 38.9 ± 0.01 after 16 cycles. The fatty acid composition of PO made it more stable to the repetitive frying process. The physical properties like density refractive index and viscosity of SO were badly affected by repetitive frying. The french fries fried in PO score higher overall acceptability in the sensory examination. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05774-4.

9.
Int J Biol Macromol ; 242(Pt 3): 125103, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37257535

RESUMEN

The impact of novel pin-to-plate atmospheric cold plasma was investigated with input voltage (170 V, 230 V) and exposure time (15 & 30 min) on oat protein by studying structural (FTIR, circular dichroism (CD), UV-vis, Fluorescence), morphological (particle size analysis, SEM, turbidity), chemical (pH, redox potential (ORP), ζ potential, carbonyl, sulfhydryl, surface hydrophobicity), and foaming characteristics. The plasma treatment reduced the pH while increasing the ORP of the dispersions. These ionic environment changes affected the ζ potential and particle size leading to the formation of larger aggregates (170-15; 230-15) and distorted smaller ones (170-30; 230-30) as confirmed by SEM. The FTIR spectra showed reduced intensity at specific amide bands (1600-1700 cm-1) and also an increase in carbonyl stretching (1743 cm-1) representing oxidative carbonylation (increase in carbonyl content). Thus, the partial exposure of hydrophobic amino acids increases surface hydrophobicity. The altered secondary structure (rise in α-helix, decrement in ß-sheets and turns), and tertiary structures were observed in circular dichroism (CD) and UV absorbance and fluorescence characteristics of proteins respectively. Furthermore, the increase in free sulfhydryl content and disulfide content was highly affected by the plasma treatments due to observed protein unfolding and aggregations. Besides, the increased solubility and reduced surface tension contributed to the improved foaming characteristics. Thus, plasma processing influences protein structure affecting their characteristics and other functionalities.


Asunto(s)
Gases em Plasma , Avena , Estructura Secundaria de Proteína , Tensión Superficial , Desplegamiento Proteico , Interacciones Hidrofóbicas e Hidrofílicas
10.
Food Res Int ; 169: 112930, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254356

RESUMEN

The present study was done to analyze the effect of atmospheric pressure non-thermal pin-to-plate plasma at a range of different voltages (170, 200, and 230V) at different time intervals (10, 20, and 30 mins) on under-utilized pearl millet starch. The untreated and treated starches were analyzed for amylose content, pH, carbonyl, and carboxyl group, reducing sugar, turbidity, water, and oil binding property, pasting property, DSC, FTIR, XRD, and molecular weight. As cold plasma contains highly reactive species and free radicals, it is expected to cause noticeable modifications in the attributes of treated starch. There has been a significant reduction (p < 0.05) in turbidity value by 38.97% and pH value of starch from 6.49 to 4.05. Plasma-treated samples produced clearer pastes with higher stability over storage time. Cold plasma treatment also led to an increase in the ζ potential. However, there has been no significant change in the water activity and oil-binding capacity of the starch. Reducing sugar content, average molecular weight, degree of polymerization, pasting property, XRD, and FTIR data confirmed that cross-linking takes place in samples treated at lower voltages and lesser time followed by depolymerization occurring in harshly treated plasma samples. The study thus points out the possible use of cold plasma for starch modification to produce starches with altered properties.


Asunto(s)
Pennisetum , Gases em Plasma , Almidón/química , Pennisetum/metabolismo , Agua/química , Azúcares/metabolismo
11.
J Food Sci Technol ; 60(8): 2143-2152, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35761969

RESUMEN

Medium-chain triglycerides contain medium-chain fatty acid esterified to the glycerol backbone. These MCFA have a shorter chain length and are quickly metabolized in the body serving as an immediate energy source. They are known to have good physiological as well as functional characteristics which help in treating various health disorders. Naturally, they are found in coconut oil, milk fat, and palm kernel oil, and they are synthetically produced by esterification and interesterification reactions. Due to their numerous health benefits, MCT is used as a functional or nutraceutical oil in various food and pharmaceutical formulations. To increase their nutraceutical benefits and food applications MCFA can be used along with polyunsaturated fatty acids in the synthesis of structured lipids. This review aims to provide information about triglycerides of MCFA, structure, metabolism, properties, synthetic routes, intensified synthesis approaches, health benefits, application, and safety of use of MCT in the diet.

12.
Int J Biol Macromol ; 227: 938-951, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563809

RESUMEN

Sustainable and "green" technologies, such as cold plasma are gaining attention in recent times for improving the functional properties of hydrocolloids. Chemical modifications of hydrocolloids require several chemicals and solvents, which are not environment-friendly. The major objective of the study was to understand the impact of plasma treatment (170-230 V|15 min) on the rheology of film-forming solutions (FFS) and the barrier properties of pectin films. The film-forming properties of plasma-treated pectin were investigated in the presence of two plasticizers, namely, glycerol and polyethylene glycol (PEG) 400. The effects of cross-linking by CaCl2 on the rheology of FFS and barrier properties of the films were discussed. A voltage-dependent decrease in the apparent viscosity of FFS was observed. The viscoelastic properties of the FFS were enhanced due to cross-linking. Glycerol exhibited a better plasticizing effect than PEG. Cross-linking and increasing voltage synergistically contributed towards lower oxygen and carbon dioxide transmission rates. The moisture sorption rate and capacity of the films increased with the voltage of the treatment. The resistance to extension of the films made from glycerol and PEG decreased with voltage, with no significant change in extensibility. On the other hand, the cross-linking by Ca2+ and plasma treatment enhanced the resistance to extension for the films made from both the plasticizers. While the increasing hydrophilicity and opacity of the films were a major drawback of plasma modification, the increase in UV barrier property of the films was an advantage of the modification.


Asunto(s)
Malus , Gases em Plasma , Glicerol/química , Plastificantes/química , Pectinas/química , Reología
13.
Food Res Int ; 161: 111849, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192977

RESUMEN

Subcritical water is a "green" method of extraction and modification of pectin being explored in recent times. While the conventional acid extraction degrades the side chains and produces homogalacturonan (HG)-rich pectic polysaccharides, subcritical water extraction preserved the hairy region, namely the rhamnogalacturonan-I (RG-I) region of the pectin. However, higher temperatures (usually greater than 160 °C) degraded the RG-I and HG motifs, producing pectic oligosaccharides. A high selectivity towards pectic polysaccharides with a low protein content was observed during extraction by subcritical water. This can be majorly attributed to the heat-induced denaturation of proteins. Although the bioactive and emulsifying properties were more remarkable for subcritical water-extracted pectin, the rheological properties such as elasticity were negatively impacted. Apart from extraction, subcritical water can also be employed to aid the breakdown of pectic polysaccharides into oligosaccharides. The addition of several organic acids in subcritical water can help form pectic fragments, which are otherwise possible only by adding a cocktail of enzymes. For instance, carboxylic acids in subcritical water media can have a similar action to endo-polygalacturonase on the homogalacturonan backbone. It is worthwhile to note that intense extraction or modification conditions can form advanced glycation end products, which are undesirable and should be monitored throughout the modification process. Several thermodynamic and kinetic models can be employed to predict the breakdown of the pectin structure in subcritical conditions. Finally, this study suggests a strategy for obtaining the optimum process parameters, namely, temperature, duration, and the liquid:solid ratio for achieving maximum yield and the desired structure of the pectic polysaccharide.


Asunto(s)
Poligalacturonasa , Agua , Ácidos Carboxílicos , Productos Finales de Glicación Avanzada , Oligosacáridos , Pectinas/química , Poligalacturonasa/metabolismo , Polisacáridos , Ramnogalacturonanos , Agua/química
14.
J Food Sci Technol ; 59(11): 4297-4304, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36193466

RESUMEN

In the present research work, medium-chain triglyceride (MCT) is used in the preparation of puran poli. Effect of MCT on various attributes likes textural, microbiological, sensory and oxidative stability of puran poli was studied. Use of MCT showed a positive effect on the texture of puran poli without use of hydrocolloids. Texture of puran poli became soft after storage of 15 and 25 days at 25 ± 2 °C and 4 ± 2 °C respectively. Puran poli showed no bacterial growth at both the storage conditions, however, there was yeast and mould growth on Puran poli stored at 25 ± 2 °C after 25 days i.e., 3 × 101 CFU/gm sample, which was safe for consumption as per WHO guidelines. pH showed a marginal change from 6.56 to 6.11 for puran poli stored at 25 ± 2 °C and from 6.62 to 6.33 for puran poli stored at 4 ± 2 °C. Sensory attributes like colour, taste, texture was not affected by the use of medium-chain triglyceride. Overall acceptability of puran Poli was satisfactory for the storage period of 30 days at 4 ± 2 °C.

15.
World J Microbiol Biotechnol ; 38(12): 219, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36070101

RESUMEN

Enterococcus bacteria are studied in various sectors including fermentation, food and dairy industries,as well as studied for their probiotic properties but have limited use due to their possible pathogenic behavior. The present report talks about the metabolites produced, by the previously isolated Enterococcus strain, E.villorum SB2 (accession number KX830968), from the vaginal source. The growth of the bacteria in three types of media (M17, MRS and LAPTg) was compared, where the M17 media gave better bacterial colonies, also maximum growth rate was observed in M17 media (Td = 1.6 h & k = 0.4 h-1), and thus was selected as the metabolite production media. Further, the studied bacteria did not show any hemolytic activity, making it safe for industrial applications. The HR-LCMS results showed the production of various amino acids, organic acids, peptides, and other metabolites like flavonoids (Quercetin 3-O-Manoglucoside), terpenoids (7',8',Dihydro-8'-hydroxycitraniaxanthin, O-Methylganoderic acid O, Thalicsessine, Austinol, Valdiate), indole derivatives produced by tryptophan metabolism (5-hydroxykynurenamine, 2S,4R)-4-(9H-Pyrido[3,4-b]indol-1-yl)-1,2,4-butanetriol, Indoleacrylic acid), antimicrobial compounds (Fortimicin A) and fatty acids (Stearic acid, Myristic acid), which were earlier unreported form Enterococcus species opening new scope for discovering new industrial applications of the strain. As the studied bacteria has been reported to be a potential probiotic, the detection of these industrially important metabolites can be studied further in future studies to reveal the potential industrial applications of the strain.


Asunto(s)
Enterococcus , Mujeres Embarazadas , Bacterias/metabolismo , Femenino , Humanos , Embarazo , Vagina/microbiología
16.
Carbohydr Polym ; 278: 118967, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973782

RESUMEN

Modification of hydrocolloids to alter their functional properties using chemical methods is well documented in the literature. There has been a recent trend of adopting eco-friendly and "green" methods for modification. Pectin, being a very important hydrocolloid finds its use in various food applications due to its gelling, emulsifying, and stabilizing properties. The adoption of various "green" methods can alter the properties of pectin and make it more suitable for incorporation in food products. The novel approaches such as microwave and pulsed electric field can also be utilized for solvent-free modification, making it desirable from the perspective of sustainability, as it reduces the consumption of organic chemicals. Pectic oligosaccharides (POSs) produced via novel approaches are being explored for their biological properties and incorporation in various functional foods. The review can help to set the perspective of potential scale-up and adoption by the food industry for modification of pectin.


Asunto(s)
Pectinas/química , Adopción , Electricidad , Industria de Alimentos , Microondas , Oligosacáridos/química
17.
Int J Biol Macromol ; 196: 63-71, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-34896473

RESUMEN

This study aimed to investigate the effect of atmospheric pressure non-thermal pin-to-plate plasma on the functional, rheological, thermal, and morphological properties of mango seed kernel starch. As cold plasma contains highly reactive species and free radicals, it is expected to cause noticeable modifications in the attributes of starch treated. The isolated mango seed kernel starch was subjected to the plasma treatment of input voltages 170 and 230 V for 15 and 30 min of exposure. Water adsorption, swelling, and solubility at lower temperatures. There has been a significant reduction (p < 0.05) in pH values of starch from 7.09 to 6.16 and also the desirable reduction in turbidity values by 42.60%. However, there has been no significant change in the oil and water binding behavior of the starch. The FTIR spectra of MSKS demonstrate the formation of amines which contributes to the better hydrophilic nature of the starch. The structural modification has been adequately confirmed by SEM images. The maximum voltage and time combination, lead to depolymerization of starch which is supported by NMR spectra thus affecting thermal and rheological properties. The application of cold plasma-modified MSKS in food would facilitate stable and smooth textural development.


Asunto(s)
Fenómenos Químicos/efectos de los fármacos , Mangifera/química , Gases em Plasma/química , Gases em Plasma/farmacología , Reología/efectos de los fármacos , Semillas/química , Almidón/química , Análisis Espectral , Almidón/aislamiento & purificación
18.
Anim Biotechnol ; 33(7): 1721-1729, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33947302

RESUMEN

Meat is traditionally obtained by sacrificing the animals. It is considered as one of the richest sources of proteins. There is an increasing demand for meat worldwide. It may not be possible to fulfill this demand for meat in future. Therefore, there is an urgent need to find out the alternative resources for proteins requirement shortly. Clean meat production is one of the best methods to be adopted as an alternative to traditional meat. The word 'clean' signifies that we can procure meat from animals without its monstrous slaughtering. Hence, it is prepared by isolating a single cell and culturing them in controlled growth conditions and medium that mimic the in vivo condition. It is not a brand new technology, but the tools for developing clean meat that mimics real meat have been technologically advanced recently. Many companies have marketed clean meat products worldwide from last five years. And it has been observed that there are mixed responses for its acceptance by consumers. The main driving forces for clean meat production derives from the concerns over environment, animal welfare, public and consumer health aspects of animal production, use of antibiotics in the animal industries, and food security. Since it's an upcoming meat production technology, there are many hurdles and challenges like nutritional attributes, flavor, shape, and structure compared to real meat. It requires many skills and understanding of muscle stem cells' regeneration and their growth under optimized scale-up production conditions. In this paper the complete details about clean meat, types of cells, and techniques used for its production has been discussed on a lab scale.


Asunto(s)
Carne , Células Satélite del Músculo Esquelético , Animales , Carne/análisis , Conservación de los Recursos Naturales
19.
Front Nutr ; 8: 657090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34169087

RESUMEN

Food is subjected to various thermal treatments during processes to enhance its shelf-life. But these thermal treatments may result in deterioration of the nutritional and sensory qualities of food. With the change in the lifestyle of people around the globe, their food needs have changed as well. Today's consumer demand is for clean and safe food without compromising the nutritional and sensory qualities of food. This directed the attention of food professionals toward the development of non-thermal technologies that are green, safe, and environment-friendly. In non-thermal processing, food is processed at near room temperature, so there is no damage to food because heat-sensitive nutritious materials are intact in the food, contrary to thermal processing of food. These non-thermal technologies can be utilized for treating all kinds of food like fruits, vegetables, pulses, spices, meat, fish, etc. Non-thermal technologies have emerged largely in the last few decades in food sector.

20.
J Environ Manage ; 290: 112597, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33878627

RESUMEN

This study was aimed to isolate fast-growing thraustochytrids and the influence of seasonal variation in fatty acid composition from the mangrove habitat. The thraustochytrids were isolated from fallen yellowish or green mangrove leaves, in four seasons, including winter, summer, rainy, and post rainy season in one year. The thraustochytrids were analyzed for biomass production, total lipid content, and fatty acid profile. The thraustochytrid isolates showed biomass yield and total lipid content in the range of 14.12 ± 0.69 to 22.98 ± 0.53 g/L and 34.98-58.86% per dry cell weight, respectively. The isolates showed two dominant fatty acids, palmitic acid (PA) as saturated fatty acid (SFA) and docosahexaenoic acid (DHA) as long-chain polyunsaturated fatty acids (LC-PUFA) in total fatty acid (TFA) content. The significant differences (P < 0.05) were observed for seasonal variations in SFA and DHA content in summer isolates and winter isolates. The maximum DHA content with 47.12% of TFA, recorded in winter (January) isolates and summer (April) isolates with SFA 68.82% of TFA. The results from this study were verified the hypothesis that the presence of high DHA producing thraustochytrids in lower temperature season in the same habitat. These findings have also emphasized the role of the environmental temperature conditions and the importance of thraustochytrid fatty acid composition as a dietary biomarker. Also, it revealed the ecological significance of thraustochytrid in DHA enrichment in the food web of the marine ecosystem. These findings could be useful while isolating thraustochytrids according to seasons for industrial application for omega 3 fatty acids and biodiesel production.


Asunto(s)
Ácidos Grasos , Estramenopilos , Ecosistema , India , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA