RESUMEN
BACKGROUND: Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), continues to pose a significant clinical and scientific challenge. The most significant finding of recent years is that PDAC tumours harbour their specific microbiome, which differs amongst tumour entities and is distinct from healthy tissue. This review aims to evaluate and summarise all PDAC studies that have used the next-generation technique, 16S rRNA gene amplicon sequencing within each bodily compartment. As well as establishing a causal relationship between PDAC and the microbiome. MATERIALS AND METHODS: This systematic review was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. A comprehensive search strategy was designed, and 1727 studies were analysed. RESULTS: In total, 38 studies were selected for qualitative analysis and summarised significant PDAC bacterial signatures. Despite the growing amount of data provided, we are not able to state a universal 16S rRNA gene microbial signature that can be used for PDAC screening. This is most certainly due to the heterogeneity of the presentation of results, lack of available datasets and the intrinsic selection bias between studies. CONCLUSION: Several key studies have begun to shed light on causality and the influence the microbiome constituents and their produced metabolites could play in tumorigenesis and influencing outcomes. The challenge in this field is to shape the available microbial data into targetable signatures. Making sequenced data readily available is critical, coupled with the coordinated standardisation of data and the need for consensus guidelines in studies investigating the microbiome in PDAC.
RESUMEN
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is known to have a heterogeneous desmoplastic tumour microenvironment (TME) with a large number of immunosuppressive cells. Recently, high B-cell infiltration in PDAC has received growing interest as a potential therapeutic target. METHODS: Our literature review summarises the characteristics of tumour-associated tertiary lymphoid structures (TLSs) and highlight the key studies exploring the clinical outcomes of TLSs in PDAC patients and the direct effect on the TME. RESULTS: The location, density and maturity stages of TLSs within tumours play a key role in determining the prognosis and is a new emerging target in cancer immunotherapy. DISCUSSION: TLS development is imperative to improve the prognosis of PDAC patients. In the future, studying the genetics and immune characteristics of tumour infiltrating B cells and TLSs may lead towards enhancing adaptive immunity in PDAC and designing personalised therapies.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Estructuras Linfoides Terciarias , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patología , Estructuras Linfoides Terciarias/inmunología , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Pronóstico , Linfocitos Infiltrantes de Tumor/inmunología , Resultado del Tratamiento , Inmunoterapia/métodosRESUMEN
Evaluation of: Araki H, Tazawa H, Kanaya N, et al. Oncolytic virus-mediated p53 overexpression promotes immunogenic cell death and efficacy of PD-1 blockade in pancreatic cancer. Mol Ther Oncolytics. 2022;27:3-13.Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with poor prognosis. PDAC has a dense, desmoplastic stroma and immunosuppressive microenvironment, which impedes current treatment options. Immunotherapy delivered via oncolytic virotherapy is one potential solution to these barriers. Immune checkpoint inhibitors may facilitate immunogenic cell death by improving immune cell infiltration in cancer cells. PD-1 blockade shows better clinical outcomes for certain cancers. The addition of p53 to stimulate cell cycle arrest remains a novel field of research. The evaluated article by Araki et al. explores the efficacy of PD-1 blockade with oncolytic adenovirus platforms on immunogenic cell death and the possibility of combining PD-1 blockade and p53-activation. In vitro analysis showed increased cell death in multiple cell lines infected with AdV mediating p53 expression. The underlying process may attribute to apoptosis and autophagy, with evidence of increased immunogenic cell death. In vivo models demonstrated improved efficacy of p53-expressing AdV, particularly with the addition of PD-1 blockade which appears to be related to CD8+ cell infiltration.
Asunto(s)
Carcinoma Ductal Pancreático , Inmunoterapia , Viroterapia Oncolítica , Neoplasias Pancreáticas , Proteína p53 Supresora de Tumor , Humanos , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/inmunología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Inmunoterapia/métodos , Animales , Adenoviridae/genética , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Muerte Celular Inmunogénica , Microambiente Tumoral , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismoRESUMEN
BACKGROUND: Immunotherapy directed at 5T4 tumor antigen may delay the need for further chemotherapy. An attenuated modified vaccinia Ankara virus containing the gene encoding for 5T4 (MVA-5T4) was studied in asymptomatic relapsed ovarian cancer. OBJECTIVE: To assess the effectiveness and safety of MVA-5T4 as treatment for asymptomatic relapsed ovarian cancer. METHODS: TRIOC was a phase II randomized (1:1), placebo-controlled, double-blind multicenter study. The primary aim was to assess the effectiveness and safety of MVA-5T4 as a treatment for asymptomatic patients with relapsed ovarian cancer. Eligible patients had International Federation of Gynecology and Obstetrics (FIGO) stage IC1-III or IVA epithelial ovarian, fallopian tube, or primary peritoneal carcinoma, Eastern Cooperative Oncology Group (ECOG) 0-1, with relapse defined by a rise in CA-125 to twice the upper limit of normal or low-volume disease on CT scan. The primary endpoint was disease progression (including deaths from ovarian cancer) at 25 weeks. Following a brief suspension, the trial restarted as a single-arm study. The revised single-arm design required 45 evaluable patients treated with MVA-5T4 to detect a 25-week progression rate of 50%, assuming an expected 70% rate without MVA-5T4; 85% power with one-sided 5% significance. RESULTS: A total of 94 eligible patients were recruited, median age was 65 years (range 42-82), median follow-up 34 months (range 2-46). Overall, 59 patients received MVA-5T4 and 35 patients received placebo. The median number of MVA-5T4 injections received was 7 (range 0-9), compared with a median of 6 (range 1-12) for patients receiving placebo. Median progression-free survival was the same in both arms (3.0 months). The 25-week progression rate was similar in both arms: 80.0% for patients treated with MVA-5T4 and 85.7% for those receiving placebo (risk difference -5.7%, 95% CI -21.4% to 10.0%). Median time to clinical intervention was improved with MVA-5T4: 7.6 months (range 6.7-9.5) vs 5.6 (range 4.9-7.6), CONCLUSION: MVA-5T4 vaccination in patients with asymptomatic relapse was well-tolerated but did not improve the progression rate at 25 weeks. The majority of patients who received MVA-5T4 had clinical intervention later than those assigned to placebo. TRIAL REGISTRATION NUMBER: NCT01556841.
Asunto(s)
Vacunas contra el Cáncer , Recurrencia Local de Neoplasia , Neoplasias Ováricas , Virus Vaccinia , Humanos , Femenino , Persona de Mediana Edad , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/inmunología , Método Doble Ciego , Anciano , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/uso terapéutico , Adulto , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Glicoproteínas de Membrana , Anciano de 80 o más AñosRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) has a very poor survival. The intra-tumoural microbiome can influence pancreatic tumourigenesis and chemoresistance and, therefore, patient survival. The role played by bile microbiota in PDAC is unknown. We aimed to define bile microbiome signatures that can effectively distinguish malignant from benign tumours in patients presenting with obstructive jaundice caused by benign and malignant pancreaticobiliary disease. Prospective bile samples were obtained from 31 patients who underwent either Endoscopic Retrograde Cholangiopancreatography (ERCP) or Percutaneous Transhepatic Cholangiogram (PTC). Variable regions (V3-V4) of the 16S rRNA genes of microorganisms present in the samples were amplified by Polymerase Chain Reaction (PCR) and sequenced. The cohort consisted of 12 PDAC, 10 choledocholithiasis, seven gallstone pancreatitis and two primary sclerosing cholangitis patients. Using the 16S rRNA method, we identified a total of 135 genera from 29 individuals (12 PDAC and 17 benign). The bile microbial beta diversity significantly differed between patients with PDAC vs. benign disease (Permanova p = 0.0173). The separation of PDAC from benign samples is clearly seen through unsupervised clustering of Aitchison distance. We found three genera to be of significantly lower abundance among PDAC samples vs. benign, adjusting for false discovery rate (FDR). These were Escherichia (FDR = 0.002) and two unclassified genera, one from Proteobacteria (FDR = 0.002) and one from Enterobacteriaceae (FDR = 0.011). In the same samples, the genus Streptococcus (FDR = 0.033) was found to be of increased abundance in the PDAC group. We show that patients with obstructive jaundice caused by PDAC have an altered microbiome composition in the bile compared to those with benign disease. These bile-based microbes could be developed into potential diagnostic and prognostic biomarkers for PDAC and warrant further investigation.
Asunto(s)
Carcinoma Ductal Pancreático , Ictericia Obstructiva , Microbiota , Neoplasias Pancreáticas , Humanos , Bilis , Proyectos Piloto , Estudios Prospectivos , ARN Ribosómico 16S/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Microbiota/genética , Reino UnidoRESUMEN
Renal cell carcinoma is an immunogenic tumour with a prominent dysfunctional immune cell infiltrate, unable to control tumour growth. Although tyrosine kinase inhibitors and immunotherapy have improved the outlook for some patients, many individuals are non-responders or relapse despite treatment. The hostile metabolic environment in RCC affects the ability of T-cells to maintain their own metabolic programme constraining T-cell immunity in RCC. We investigated the phenotype, function and metabolic capability of RCC TILs correlating this with clinicopathological features of the tumour and metabolic environment at the different disease stages. Flow cytometric analysis of freshly isolated TILs showed the emergence of exhausted T-cells in advanced disease based on their PD-1high and CD39 expression and reduced production of inflammatory cytokines upon in vitro stimulation. Exhausted T-cells from advanced stage disease also displayed an overall phenotype of metabolic insufficiency, characterized by mitochondrial alterations and defects in glucose uptake. Nanostring nCounter cancer metabolism assay on RNA obtained from 30 ccRCC cases revealed significant over-expression of metabolic genes even at early stage disease (pT1-2), while at pT3-4 and the locally advanced thrombi stages, there was an overall decrease in differentially expressed metabolic genes. Notably, the gene PPARGC1A was the most significantly down-regulated gene from pT1-2 to pT3-4 RCC which correlated with loss of mitochondrial function in tumour-infiltrating T-cells evident at this tumour stage. Down-regulation of PPARGC1A into stage pT3-4 may be the 'tipping-point' in RCC disease progression, modulating immune activity in ccRCC and potentially reducing the efficacy of immunotherapies in RCC and poorer patient outcomes.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Recurrencia Local de Neoplasia , Progresión de la Enfermedad , InmunidadRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) accounts for up to 95% of all pancreatic cancer cases and is the seventh-leading cause of cancer death. Poor prognosis is a result of late presentation, a lack of screening tests and the fact some patients develop resistance to chemotherapy and radiotherapy. Novel therapies like immunotherapeutics have been of recent interest in pancreatic cancer. However, this field remains in its infancy with much to unravel. Immunotherapy and other targeted therapies have yet to yield significant progress in treating PDAC, primarily due to our limited understanding of the disease immune mechanisms and its intricate interactions with the tumour microenvironment (TME). In this review we provide an overview of current novel immunotherapies which have been studied in the field of pancreatic cancer. We discuss their mechanisms, evidence available in pancreatic cancer as well as the limitations of such therapies. We showcase the potential role of combining novel therapies in PDAC, postulate their potential clinical implications and the hurdles associated with their use in PDAC. Therapies discussed with include programmed death checkpoint inhibitors, Cytotoxic T-lymphocyte-associated protein 4, Chimeric Antigen Receptor-T cell therapy, oncolytic viral therapy and vaccine therapies including KRAS vaccines, Telomerase vaccines, Gastrin Vaccines, Survivin-targeting vaccines, Heat-shock protein (HSP) peptide complex-based vaccines, MUC-1 targeting vaccines, Listeria based vaccines and Dendritic cell-based vaccines.
RESUMEN
Colorectal cancer (CRC) is the 2nd leading cause of cancer-related deaths worldwide, primarily due to the development of metastatic disease. The liver is the most frequently affected site. The metastatic cascade relies on a complex interaction between the immune system, tumor, and distant organs. Communication between the tumor and the metastatic site can be mediated by tumor-derived extracellular vesicles (EVs) and their cargo. The mechanisms underlying this process are starting to be understood through research that has rapidly expanded over the past 15 years. One crucial aspect is the remodeling of the microenvironment at the site of metastasis, which is essential for the formation of a premetastatic niche and the subsequent establishment of metastatic deposits. In the evaluated study, the authors use cellular experiments and a mouse model to investigate how tumour derived extracellular vesicles and their microRNA contents interact with hepatic stellate cells (HSCs). They demonstrate how this may lead to remodelling of the microenvironment and the formation of colorectal liver metastasis using their experimental model. In this mini review, we examine the current evidence surrounding tumour derived EVs and their effect on the tumour microenvironment to highlight potential areas for future research in CRC and other malignancies.
RESUMEN
Oncolytic viruses are biological agents which can easily be delivered at high doses directly to the bladder through a catheter (intravesical), with low risk of systemic uptake and toxicity. To date, a number of viruses have been delivered intravesically in patients and in murine models with bladder cancer and antitumour effects demonstrated. Here, we describe in vitro methods to evaluate Coxsackie virus, CVA21, as an oncolytic virus for the treatment of human bladder cancer by determining the susceptibility of bladder cancer cell lines expressing differing levels of ICAM-1 surface receptor to CVA21.
Asunto(s)
Carcinoma , Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias de la Vejiga Urinaria , Humanos , Animales , Ratones , Virus Oncolíticos/genética , Virus Oncolíticos/metabolismo , Viroterapia Oncolítica/métodos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Vejiga Urinaria/metabolismo , Línea Celular , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/patología , Línea Celular TumoralRESUMEN
BACKGROUND: Glioblastoma multiforme (GBM) is the most common high-grade malignant brain tumour in adults and arises from the glial cells in the brain. The prognosis of treated GBM remains very poor with 5-year survival rates of 5%, a figure which has not improved over the last few decades. Currently, there is a modest 14-month overall median survival in patients undergoing maximum safe resection plus adjuvant chemoradiotherapy. HOX gene dysregulation is now a widely recognised feature of many malignancies. METHODS: In this study we have focused on HOX gene dysregulation in GBM as a potential therapeutic target in a disease with high unmet need. RESULTS: We show significant dysregulation of these developmentally crucial genes and specifically that HOX genes A9, A10, C4 and D9 are strong candidates for biomarkers and treatment targets for GBM and GBM cancer stem cells. We evaluated a next generation therapeutic peptide, HTL-001, capable of targeting HOX gene over-expression in GBM by disrupting the interaction between HOX proteins and their co-factor, PBX. HTL-001 induced both caspase-dependent and -independent apoptosis in GBM cell lines. CONCLUSION: In vivo biodistribution studies confirmed that the peptide was able to cross the blood brain barrier. Systemic delivery of HTL-001 resulted in improved control of subcutaneous murine and human xenograft tumours and improved survival in a murine orthotopic model.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Genes Homeobox , Glioblastoma/tratamiento farmacológico , Glioblastoma/terapia , Humanos , Ratones , Péptidos/genética , Distribución TisularRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second most common cause of cancer death in the USA by 2030, yet progress continues to lag behind that of other cancers, with only 9% of patients surviving beyond 5 years. Long-term survivorship of PDAC and improving survival has, until recently, escaped our understanding. One recent frontier in the cancer field is the microbiome. The microbiome collectively refers to the extensive community of bacteria and fungi that colonise us. It is estimated that there is one to ten prokaryotic cells for each human somatic cell, yet, the significance of this community in health and disease has, until recently, been overlooked. This review examines the role of the microbiome in PDAC and how it may alter survival outcomes. We evaluate the possibility of employing microbiomic signatures as biomarkers of PDAC. Ultimately this review analyses whether the microbiome may be amenable to targeting and consequently altering the natural history of PDAC.
RESUMEN
Immune modulators play a crucial role in carcinogenesis and cancer progression by impairing cancer cell-targeted immune responses. T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) regulates T-cell function and cancer cell recognition and was therefore identified as a promising target for cancer immunotherapy. TIGIT is expressed in T cells and natural killer (NK) cells and has three ligands: CD155, CD112 and CD113. CD155 binds TIGIT with the highest affinity and promotes direct and indirect downregulation of T-cell response. TIGIT signalling further inhibits NK function and secretion of proinflammatory cytokines. An association between TIGIT expression and poor survival was identified in multiple cancer entities. Blocking TIGIT with monoclonal antibodies, and a combination of TIGIT and programmed cell death protein 1 blockade in particular, prevented tumour progression, distant metastasis and tumour recurrence in in vivo models. Inhibition of TIGIT is currently evaluated in first clinical trials.
Asunto(s)
Recurrencia Local de Neoplasia , Linfocitos T , Anticuerpos Monoclonales/uso terapéutico , Humanos , Inmunoterapia , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Linfocitos T/metabolismoRESUMEN
Lymphocyte-activation gene 3 (LAG-3) is a coreceptor found on activated T-lymphocytes activated B-lymphocytes and natural killer (NK) cells. It is closely related to CD4 where it shares multiple common and divergent features. It contains specific binding sites with high affinity to major histocompatibility complex (MHC) Class II and functions as an inhibitor of T-cell signalling. Tumour-infiltrating lymphocytes with high LAG-3 expression have been found in many solid tumours including ovarian cancer, melanoma, colorectal cancer and haematological malignancies including Hodgkin and diffuse large B-cell lymphoma. LAG-3 antagonism has been demonstrated to restore the anti-tumourigenic function of T-cells in vivo, however, mechanistic knowledge remains relatively poorly defined. As other immune checkpoint inhibitors have transformed the management of difficult to treat cancers, such as melanoma, it is hoped that LAG-3 might have the same potential. This review will explore LAG-3 modulation as an anticancer therapy, highlighting recent clinical developments.
Asunto(s)
Antígenos CD , Humanos , Proteína del Gen 3 de Activación de LinfocitosRESUMEN
Prostate cancers are considered "cold" tumors characterized by minimal T cell infiltrates, absence of a type I interferon (IFN) signature, and the presence of immunosuppressive cells. This non-inflamed phenotype is likely responsible for the lack of sensitivity of prostate cancer patients to immune checkpoint blockade (ICB) therapy. Oncolytic virus therapy can potentially overcome this resistance to immunotherapy in prostate cancers by transforming cold tumors into "hot," immune cell-infiltrated tumors. We investigated whether the combination of intratumoral oncolytic reovirus, followed by targeted blockade of Programmed cell death protein 1 (PD-1) checkpoint inhibition and/or the immunomodulatory CD73/Adenosine system can enhance anti-tumor immunity. Treatment of subcutaneous TRAMP-C2 prostate tumors with combined intratumoral reovirus and anti-PD-1 or anti-CD73 antibody significantly enhanced survival of mice compared with reovirus or either antibody therapy alone. Only combination therapy led to rejection of pre-established tumors and protection from tumor re-challenge. This therapeutic effect was dependent on CD4+ T cells and natural killer (NK) cells. NanoString immune profiling of tumors confirmed that reovirus increased tumor immune cell infiltration and revealed an upregulation of the immune-regulatory receptor, B- and T-lymphocyte attenuator (BTLA). This expression of BTLA on innate antigen-presenting cells (APCs) and its ligand, Herpesvirus entry mediator (HVEM), on T cells from reovirus-infected tumors was in keeping with a role for the HVEM-BTLA pathway in promoting the potent anti-tumor memory response observed.
RESUMEN
It is now well-recognized that the tumor microenvironment (TME) is not only a key regulator of cancer progression but also plays a crucial role in cancer treatment responses. Recently, several high-profile publications have demonstrated the importance of particular immune parameters and cell types that dictate responsiveness to immunotherapies. With this increased understanding of TME-mediated therapy, approaches that increase therapeutic efficacy by remodeling the TME are actively being pursued. A classic example of this, in practice by urologists for over 40 years, is the manipulation of the bladder microenvironment for the treatment of non-muscle invasive bladder cancer (NMIBC) by instillation of intravesical bacillus Calmette-Guerin (BCG). The success of BCG treatment is thought to be due to its ability to induce a massive influx of Th1-polarized inflammatory cells, production of Th1 inflammatory cytokines and the generation of tumor-targeted Th1-mediated cytotoxic responses. Whilst BCG immunotherapy is currently the best treatment for NMIBC, ~30% of patients show no response to this treatment. Here we present a review highlighting a variety of promising alternative immunotherapies being developed that remodel the bladder tumor microenvironment. These include (1) the use of oncolytic viruses which selectively replicate within cancer cells whilst also modifying the immunological components of the TME, (2) manipulation of the bladder microbiome to augment the response to BCG or other immunotherapies (3) utilizing Toll-like Receptor agonists as anti-tumor agents due to their potent stimulation of innate and adaptive immunity and (4) the growing recognition that immunotherapeutic strategies that will have the largest impact on patients may require multiple therapeutic approaches combined together. The accumulating knowledge on TME remodeling holds promise for providing an alternative therapy for patients with BCG-unresponsive NMIBC.
RESUMEN
BACKGROUND: 10%-15% of early-stage colon cancers harbour either deficient mismatch repair (dMMR), microsatellite instability high (MSI-H) or POLE exonuclease domain mutations, and are characterised by high tumour mutational burden and increased lymphocytic infiltrate. Metastatic dMMR colon cancers are highly sensitive to immune checkpoint inhibition, and recent data show POLE-mutant tumours are similarly responsive. We are conducting a phase III randomised trial to determine if the addition of the anti-PD-L1 antibody avelumab following adjuvant chemotherapy improves disease-free survival (DFS) in patients with stage III dMMR/MSI-H or POLE mutant colon cancer and is a cost-effective approach for the UK National Health Service (NHS). METHODS: We are recruiting patients with completely resected, stage III colon cancer confirmed to have dMMR/MSI-H, locally or POLE exonuclease domain mutation on central testing. Eligible patients are randomised in a 1:1 ratio to standard fluoropyrimidine-based chemotherapy (capecitabine, oxaliplatin for 12 weeks or capecitabine for 24 weeks) or chemotherapy, followed by avelumab (10 mg/kg, 2 weekly for 24 weeks). Stratification is by chemotherapy received and MMR/MSI-H status. The primary endpoint is DFS. Secondary endpoints include overall survival, toxicity, quality of life and health resource use. The 3-year DFS rate in the control arm is expected to be ~75%. Avelumab is expected to improve the 3-year DFS rate by 12% (ie, 87%). Target accrual is 402 patients, which provides 80% power to detect an HR of 0.48 for DFS at a two-sided alpha of 0.05. This national, multicentre phase III trial is sponsored by the Royal Marsden NHS Foundation Trust and it is anticipated that approximately 40 centres in the UK will participate. This study opened to recruitment in August 2018. TRIAL REGISTRATION NUMBER: NCT03827044.
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias del Colon/genética , Reparación de la Incompatibilidad de ADN/genética , Exonucleasas/genética , Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos Inmunológicos/farmacología , Neoplasias del Colon/patología , Femenino , Humanos , Masculino , Inestabilidad de Microsatélites , Estadificación de NeoplasiasRESUMEN
Oncolytic viruses are anticancer agents that selectively target and kill cancer cells by direct lysis, while at the same time stimulating a tumor antigen-specific adaptive immune response. These promising therapeutic agents target multiple cancers and have already proven to be an effective treatment option for solid malignancies. One such agent, T-Vec (Talimogene laherparepvec) has been licensed and is in routine clinical use for treatment of malignant melanoma.Non-muscle invasive bladder cancer (NMIBC) is an ideal potential target for oncolytic immunotherapy as locally instilled live biological therapy using Bacille Calmette-Guerin (BCG) is already well established in the clinical setting. Coxsackievirus A21 (CVA21) is a novel intercellular adhesion molecule-1 (ICAM-1)-targeted immunotherapeutic virus. We have investigated CVA21-induced cytotoxicity in a panel of human bladder cancer cell lines, revealing a range of sensitivities largely correlating with expression of the viral receptor ICAM-1. CVA21 in combination with low doses of mitomycin-C enhanced CVA21 viral replication and oncolysis by increasing surface expression levels of ICAM-1. In addition to cell lines and an animal model a key component of our studies into oncolytic immunotherapy for bladder cancer was the use of a bladder tumor precision slice preclinical model system which represents tumor architecture, heterogeneity, and the complexity of a tumor in vitro. Results seen in cell lines were reflected in the tumor slice model whereby levels of virus protein expression and induction of apoptosis were enhanced with prior exposure to mitomycin-C. In this chapter we demonstrate the utility of the precision cut tumor slice model as a unique organotypic model to test oncolytic viruses. We will describe how to prepare and slice the tumor using a vibrating microtome together with the optimum culture and conditions for treatment.
Asunto(s)
Enterovirus , Vectores Genéticos , Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/terapia , Animales , Terapia Combinada , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Enterovirus/genética , Enterovirus/inmunología , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Humanos , Inmunohistoquímica , Inmunoterapia , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Resultado del Tratamiento , Neoplasias de la Vejiga Urinaria/cirugíaRESUMEN
PURPOSE: The CANON [CAVATAK in NON-muscle-invasive bladder cancer (NMIBC)] study evaluated a novel ICAM-1-targeted immunotherapeutic-coxsackievirus A21 as a novel oncolytic agent against bladder cancer. PATIENTS AND METHODS: Fifteen patients enrolled in this "window of opportunity" phase I study, exposing primary bladder cancers to CAVATAK prior to surgery. The first 9 patients received intravesical administration of monotherapy CAVATAK; in the second stage, 6 patients received CAVATAK with a subtherapeutic dose of mitomycin C, known to enhance expression of ICAM-1 on bladder cancer cells. The primary endpoint was to determine patient safety and maximum tolerated dose (MTD). Secondary endpoints were evidence of viral replication, induction of inflammatory cytokines, antitumor activity, and viral-induced changes in resected tissue. RESULTS: Clinical activity of CAVATAK was demonstrated by induction of tumor inflammation and hemorrhage following either single or multiple administrations of CAVATAK in multiple patients, and a complete resolution of tumor in 1 patient. Whether used alone or in combination with mitomycin C, CAVATAK caused marked inflammatory changes within NMIBC tissue biopsies by upregulating IFN-inducible genes, including both immune checkpoint inhibitory genes (PD-L1 and LAG3) and Th1-associated chemokines, as well as the induction of the innate activator RIG-I, compared with bladder cancer tissue from untreated patients. No significant toxicities were reported in any patient, from either virus or combination therapy. CONCLUSIONS: The acceptable safety profile of CAVATAK, proof of viral targeting, replication, and tumor cell death together with the virus-mediated increases in "immunological heat" within the tumor microenvironment all indicate that CAVATAK may be potentially considered as a novel therapeutic for NMIBC.
Asunto(s)
Inmunoterapia/métodos , Molécula 1 de Adhesión Intercelular/inmunología , Viroterapia Oncolítica/métodos , Virus Oncolíticos/inmunología , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/terapia , Administración Intravesical , Anciano , Anciano de 80 o más Años , Estudios de Factibilidad , Femenino , Humanos , Inmunoterapia/efectos adversos , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Terapia Molecular Dirigida , Viroterapia Oncolítica/efectos adversos , Microambiente Tumoral/inmunología , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/virologíaRESUMEN
BACKGROUND: Epithelial ovarian cancer is a common malignancy, with no clinically approved diagnostic biomarker. Engrailed-2 (EN2) is a homeodomain-containing transcription factor, essential during embryological neural development, which is dysregulated in several cancer types. We evaluated the expression of EN2 in Epithelial ovarian cancer, and reviewed its role as a biomarker. METHODS: We evaluated 8 Epithelial ovarian cancer cell lines, along with > 100 surgical specimens from the Royal Surrey County Hospital (2009-2014). In total, 108 tumours and 5 normal tissue specimens were collected. En2 mRNA was evaluated by semi-quantitative RT-PCR. Histological sub-type, and platinum-sensitive/-resistant status were compared. Protein expression was assessed in cell lines (immunofluorescence), and in > 150 tumours (immunohistochemistry). RESULTS: En2 mRNA expression was elevated in serous ovarian tumours compared with normal ovary (p < 0.001), particularly in high-grade serous ovarian cancer (p < 0.0001) and in platinum-resistant tumours (p = 0.0232). Median Overall Survival and Progression-free Survival were reduced with high En2 expression (OS = 28 vs 42 months, p = 0.0329; PFS = 8 vs 27 months; p = 0.0004). Positive cytoplasmic EN2 staining was demonstrated in 78% of Epithelial ovarian cancers, with absence in normal ovary. EN2 positive high-grade serous ovarian cancer patients had a shorter PFS (10 vs 17.5 months; p = 0.0103). CONCLUSION: The EN2 transcription factor is a novel ovarian cancer biomarker. It demonstrates prognostic value, correlating with worse Overall Survival and Progression-free Survival. It is hoped that further work will validate its use as a biomarker, and provide insight into the role of EN2 in the development, progression and spread of ovarian cancer.
Asunto(s)
Biomarcadores de Tumor , Carcinoma Epitelial de Ovario/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Ováricas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Epitelial de Ovario/diagnóstico , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/terapia , Línea Celular Tumoral , Femenino , Técnica del Anticuerpo Fluorescente , Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Proteínas del Tejido Nervioso/genética , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
As a clinical setting in which local live biological therapy is already well established, non-muscle invasive bladder cancer (NMIBC) presents intriguing opportunities for oncolytic virotherapy. Coxsackievirus A21 (CVA21) is a novel intercellular adhesion molecule-1 (ICAM-1)-targeted immunotherapeutic virus. This study investigated CVA21-induced cytotoxicity in a panel of human bladder cancer cell lines, revealing a range of sensitivities largely correlating with expression of the viral receptor ICAM-1. CVA21 in combination with low doses of mitomycin-C enhanced CVA21 viral replication and oncolysis by increasing surface expression levels of ICAM-1. This was further confirmed using 300-µm precision slices of NMIBC where levels of virus protein expression and induction of apoptosis were enhanced with prior exposure to mitomycin-C. Given the importance of the immunogenicity of dying cancer cells for triggering tumor-specific responses and long-term therapeutic success, the ability of CVA21 to induce immunogenic cell death was investigated. CVA21 induced immunogenic apoptosis in bladder cancer cell lines, as evidenced by expression of the immunogenic cell death (ICD) determinant calreticulin, and HMGB-1 release and the ability to reject MB49 tumors in syngeneic mice after vaccination with MB49 cells undergoing CVA21 induced ICD. Such CVA21 immunotherapy could offer a potentially less toxic, more effective option for the treatment of bladder cancer.