Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Curr Drug Res Rev ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38299413

RESUMEN

The angiotensin-converting enzyme-2 (ACE-2) alters the pathophysiology of various fatal cardiovascular diseases, including ischemic heart disease, whereas angiotensin 1-7 (Ang 1-7) exerts a wide range of actions. The effects of ischemia-reperfusion (IR) injury include damage to myocardial tissue that initiates protease action, causing cardiac cell death. Angiotensin- II (Ang-II) contributes through the renin-angiotensin system (RAS) to the IR injury, whereas Ang 1-7 paradoxically exerts a protective effect through the same. Thus, the myocardial ischemic reperfusion injury (MIRI) may be altered by the RAS of the heart. This review paper focuses on ACE-2, angiotensin-converting enzyme (ACE), and Ang 1-7 regulation in the RAS of the heart in the pathophysiology of MIRI. The treatment in such conditions using ACE-2 activator, ACE inhibitor, and Ang-II antagonists may promote vascular functions as well as cardio- protection.

2.
Biol Trace Elem Res ; 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37878232

RESUMEN

In recent years, biologically synthesized metal nanoparticles have emerged as a dynamic field of research with significant implications for biomedical applications. This review explores the latest trends in the synthesis of metal nanoparticles using biological methods, encompassing plant extracts and microorganisms such as bacteria, yeasts, and fungi. These innovative approaches offer a sustainable, cost-effective, and environmentally friendly alternative to conventional chemical synthesis methods. Moreover, this review delves into the multifaceted biomedical applications of biologically synthesized metal nanoparticles. These applications include drug delivery systems, diagnostics, therapeutics, and imaging technologies, showcasing the versatility and promise of these nanomaterials in addressing contemporary biomedical challenges. In addition, the review addresses the critical issue of cytotoxicity, offering insights into the safety and viability of these biologically derived NPs for medical use. The exploration of recent trends and advancements in this field underscores the transformative potential of biologically synthesized metal nanoparticles in revolutionizing biomedical research and healthcare.

3.
Curr Diabetes Rev ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37680158

RESUMEN

BACKGROUND: Vitamin D deficiency is becoming a widely recognized global health issue. Serum values of 25(OH) vitamin D (<20 ng/ml) are used to identify vitamin D deficiency. By prompting vascular endothelial cells to activate their nuclear receptor in cardio-myocytes, Vitamin D regulates obesity, Renin-angiotensin system (RAS), energy consumption, and pancreatic cell function. Vitamin D deficiency has been associated with diabetes, asthma, hyperlipidaemia, and pulmonary hypertension in humans. METHODS: PubMed and Google Scholar databases were utilised to search the literature on vitamin D and related diseases. RESULT: It is also linked to an elevated risk of death and heart disease. On the other hand, meta-analyses of vitamin D intervention and trials have found no substantial changes in insulin sensitivity, lipid markers, or blood pressure, which result in the association between deficiency of vitamin D and cardiovascular disease. CONCLUSION: In this review, we present the most recent research on the effects of Vitamin D therapy on various cardiovascular diseases and diabetes, and explain the underlying mechanisms.

4.
Horm Metab Res ; 55(5): 304-314, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37130536

RESUMEN

An acquired loss of cognition in several cognitive domains that is severe enough to interfere with social or professional functioning is called dementia. As well as a moderately in-depth mental status examination by a clinician to identify impairments in memory, language, attention, visuospatial cognition, such as spatial orientation, executive function, and mood, the diagnosis of dementia requires a history evaluating for cognitive decline and impairment in daily activities, with confirmation from a close friend or family member. The start and organization of the cognitive assessment can be helped by short screening tests for cognitive impairment. Clinical presentations show that neurodegenerative diseases are often incurable because patients permanently lose some types of neurons. It has been determined through an assessment that, at best, our understanding of the underlying processes is still rudimentary, which presents exciting new targets for further study as well as the development of diagnostics and drugs. A growing body of research suggests that they also advance our knowledge of the processes that are probably crucial for maintaining the health and functionality of the brain. We concentrate on a number of the animal models of memory problems that have been mentioned in this review article because dementia has numerous etiologies. Serious neurological impairment and neuronal death are the main features of neurodegenerative illnesses, which are also extremely crippling ailments. The most prevalent neurodegenerative disorders are followed by those primary nucleation pathways responsible for cognitive impairment and dementia.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Demencia , Humanos , Demencia/diagnóstico , Demencia/complicaciones , Trastornos del Conocimiento/etiología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/complicaciones , Función Ejecutiva , Cognición
5.
Horm Metab Res ; 55(1): 7-24, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36599357

RESUMEN

Cardiometabolic disorders (CMD) is a constellation of metabolic predisposing factors for atherosclerosis such as insulin resistance (IR) or diabetes mellitus (DM), systemic hypertension, central obesity, and dyslipidemia. Cardiometabolic diseases (CMDs) continue to be the leading cause of mortality in both developed and developing nations, accounting for over 32% of all fatalities globally each year. Furthermore, dyslipidemia, angina, arrhythmia, heart failure, myocardial infarction (MI), and diabetes mellitus are the major causes of death, accounting for an estimated 19 million deaths in 2012. CVDs will kill more than 23 million individuals each year by 2030. Nonetheless, new drug development (NDD) in CMDs has been increasingly difficult in recent decades due to increased costs and a lower success rate. Drug repositioning in CMDs looks promising in this scenario for launching current medicines for new therapeutic indications. Repositioning is an ancient method that dates back to the 1960s and is mostly based on coincidental findings during medication trials. One significant advantage of repositioning is that the drug's safety profile is well known, lowering the odds of failure owing to undesirable toxic effects. Furthermore, repositioning takes less time and money than NDD. Given these facts, pharmaceutical corporations are becoming more interested in medication repositioning. In this follow-up, we discussed the notion of repositioning and provided some examples of repositioned medications in cardiometabolic disorders.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Dislipidemias , Humanos , Reposicionamiento de Medicamentos , Obesidad , Enfermedades Cardiovasculares/tratamiento farmacológico
6.
Drug Res (Stuttg) ; 72(9): 477-486, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35868336

RESUMEN

In 1976, Japanese microbiologist Akira Endo discovered the first statin as a product of the fungus Penicillium citrinum that inhibited the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Their primary mode of action is to lower the blood cholesterol by decreasing hepatic cholesterol production, which upregulates hepatic low-density lipoprotein (LDL) receptors and increases LDL-cholesterol clearance. In addition to cholesterol lowering, statins inhibit other downstream products of the mevalonate pathway, causing the so-called pleiotropic effects. As a result of their pleiotropic effects statins modulate virtually all known processes of atherosclerosis and have beneficial effects outside the cardiovascular system Statins inhibit the post-translational prenylation of small GTP-binding proteins such as Rho, Rac, as well as their downstream effectors such as Rho kinase and nicotinamide adenine dinucleotide phosphate oxidases since they suppress the synthesis of isoprenoid intermediates in the cholesterol biosynthetic pathway altering the expression of endothelial nitric oxide synthase, the stability of atherosclerotic plaques, production of proinflammatory cytokines, reactive oxygen species, platelet reactivity, development of cardiac hypertrophy and fibrosis in cell culture and animal experiments. Inhibition of Rho and Rho-associated coiled-coil containing protein kinase (ROCK), has emerged as the principle mechanisms underlying the pleiotropic effects of statins. However, the relative contributions of statin pleiotropy to clinical outcomes are debatable and difficult to measure because the amount of isoprenoid inhibition by statins corresponds to some extent with the amount of LDL-cholesterol decrease. This article examines some of the existing molecular explanations underlying statin pleiotropy and discusses if they have clinical relevance in cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Animales , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , LDL-Colesterol , Colesterol , Terpenos
7.
Braz. J. Pharm. Sci. (Online) ; 58: e19254, 2022. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1374532

RESUMEN

Abstract Ischemic postconditioning (IPTC) brings cardioprotection endogenously, Atrial natriuretic peptide (ANP) produces the same effect. It happens due to down expression of endothelial nitric oxide synthase (eNOS). Thus, experimental protocol associating IPTC has been formulated to find the role of ANP in the cardioprotection of heart in OVX rats. For this experiment, heart was isolated from OVX rat and held tightly on Langendorff's apparatus in a manner that ischemia of 30 min and reperfusion of 120 min were also given. Simultaneously, IPTC with four cycles of 5 min ischemia and 5 min reperfusion of each was applied. Parameters like size of myocardial infarct, levels of lactate dehydrogenase (LDH) and release of creatine kinase- MB (CK-MB) in coronary effluent were noted after each stage of experiment for ensuring the extent of myocardial injury. Some significant changes were also seen in the histopathology of cardiovascular tissues. The cardio-protection has been made by four cycles of IPTC. It was confirmed by decline in the size of myocardial infarct. It diminishes the release of LDH and CK-MB in heart of OVX rat. Thus, IPTC induces cardio-protection in the isolated heart from OVX rat. Perfusion of ANP associating with IPTC favors the cardioprotection which is further confirmed by rise in the NO release and heart rate. The level of myocardial damage changes using IPTC, IPTC+OVX, IPTC+OVX+ANP, IPTC+ OVX+ANP+L-NAME and other groups were observed significantly and were found to be less than those in I/R control group. Thus, it is recommended that ANP involving IPTC restores attenuated cardio-protection in OVX rat heart. Therefore, Post-conditioning is useful in various clinical aspects.

8.
Mol Cell Biochem ; 476(7): 2587-2601, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33646465

RESUMEN

Lower level of testosterone in men is related to major risks of cardiovascular diseases. This risk may increase due to the opening of mitochondrial permeability transition pore (mPTP). The mPTP is also regulated by ischemic preconditioning (IPC) and a membrane protein known as caveolin. The cardioprotective effect of IPC is the most effective methodologies used in testosterone deficiency. Daidzein (DDZ) a caveolin inhibitor shows cardioprotective action. The experiment has been designed to evaluate the pretreated DDZ effect in IPC-mediated cardioprotective action in orchidectomy (OCZ)-challenged rat heart. The experiment was designed on male Wistar rats with/without OCZ. The level of testosterone is decreased by OCZ which reduces general body growth. Isolated heart from normal and OCZ rat was tied up on Langendorff's perfused apparatus and followed by ischemic reperfusion (IR) and IPC cycle. To investigate the cardioprotective effect of DDZ in heart with testosterone deficiency, a total of nine groups, each consisting of six rats (n = 6) were as follows: Sham, IR, IPC, IPC + OCZ, IPC + DDZ, IPC + OCZ + DDZ, IPC + sodium nitrite, IPC + OCZ + sodium nitrite, IPC + OCZ + DDZ + sodium nitrite. Hemodynamic parameters, cellular injury (infarct size, LDH, CKMB and cardiac troponin-T), oxidative stress, mitochondrial function, integrity and immunoblot analysis were assessed for each group. The experimental data showed that DDZ potentiated IPC-mediated increase in the heart rate, left ventricular diastolic pressure, coronary flow; + dp/dtmax, and - dp/dtmax. The pretreated DDZ decreases the action of LDH and CKMB, myocyte size, cardiac collagen content, infarct size and ventricular fibrillation and attenuation in oxidative stress and mitochondrial dysfunction in OCZ-challenged rat heart in all sets of experiments. Sodium nitrite, a producer of nitric oxide (NO), enhanced potentiating effects of DDZ on IPC-mediated cardioprotection in OCZ-challenged rats. These observations show that the downregulation of caveolin through impaired opening of mPTP during reperfusion and caveolin might be a potential adjuvant to IPC against cardiac injury in OCZ-challenged rats.


Asunto(s)
Caveolinas/metabolismo , Precondicionamiento Isquémico , Miocardio/metabolismo , Orquiectomía , Animales , Masculino , Miocardio/patología , Ratas , Ratas Wistar
9.
Drug Res (Stuttg) ; 69(8): 419-427, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30776841

RESUMEN

Caveolae have impressive morphological highlights of the cytomembrane of mammalian cells which involve in wide diversity of cellular functions involving signaling pathways and cholesterol hastening. Caveolin proteins possess a 'scaffolding' domain which for caveolin-1 and caveolin-3 appear to act a dominant role in signal regulation through caveolae. Caveolin-1 is treated to be protein in the cytomembrane entrapped with caveolae in endothelial cells and vascular smooth muscle cells which diminish nitric oxide (NO) by fill up the calcium/calmodulin (Ca2+/CaM) confining point of endothelial nitric oxide synthase (eNOS), decrease NO generation produce endothelial dysfunction and atherosclerotic injury development. It is a cholesterol-binding layer protein associated with cell cholesterol transport and also shows cardioprotective action through ischemic preconditioning (IPC) in diabetic and postmenopausal rat heart. Additionally it is ensnared in the procedures of tumorigenesis, prostate disease, and inflammation. The present study in the paper is to explore the structural functionalities of caveolins and their contributory role in CVS disorders and various other diseases.


Asunto(s)
Caveolinas/fisiología , Adipocitos/química , Adipocitos/ultraestructura , Enfermedad de Alzheimer/etiología , Animales , Enfermedades Cardiovasculares/etiología , Caveolas/química , Caveolinas/farmacología , Caveolinas/uso terapéutico , Colesterol/fisiología , Diabetes Mellitus Tipo 2/etiología , Inflamación/etiología , Insulina/fisiología , Precondicionamiento Isquémico , Riñón/fisiología , Riñón/fisiopatología , Enfermedades Musculares/etiología , Neoplasias/etiología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/fisiología , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/fisiología , Sistema Respiratorio/citología , Transducción de Señal , Testosterona/deficiencia , Testosterona/fisiología , Vertebrados/anatomía & histología
10.
Drug Res (Stuttg) ; 69(7): 365-373, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30609434

RESUMEN

A study of potassium channels correlates the fundamentals of mechanistic pathways and various physiological functions. The knowledge of these pathways provides the background, how to determine unit cell functions and to affect cardio protection. ATP sensitive potassium channels adjust excitability of membrane and functions as per metabolic status of cell. A lot of energy consumption primarily occurred in skeletal muscles which also express high number of potassium channels. The increase in calcium release and high heat production is occurred due to loss of potassium channels. Such type of mediations determines metabolic changes and energy required in the dissipation. IPC reduces infarct size in anesthetized mice. In ischemic-reperfusion, pressure in left ventricle was watched while contractile power recovery did not happen. It was seen that elements of intact potassium channel are fundamental for Ischemic preconditioning (IPC). If more prominent is enactment of potassium channels and their cardiologic effects create high heart rate. All the more as of late, it has been suggested that mitochondrial ATP sensitive potassium channels are critical as closing stage effectors which trigger IPC as opposed to sarcolemmal potassium channels. Nevertheless, the importance of the potassium channels reconsidered in cardio-protection in present findings. These discoveries recommend that potassium channels in the adjusting ischemic-reperfusion damage in mice. The heart rate of the mouse occurred during ischemia; enhance watchful extrapolation applied to larger warm blooded animals.


Asunto(s)
Metabolismo Energético , Precondicionamiento Isquémico Miocárdico , Canales KATP/metabolismo , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Animales , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Frecuencia Cardíaca , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ratones , Mitocondrias/metabolismo , Infarto del Miocardio/etiología , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/patología , Miocardio/citología , Miocardio/metabolismo , Miocardio/patología
11.
Drug Res (Stuttg) ; 68(6): 317-327, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29132177

RESUMEN

Silks are naturally occurring polymers that have been used clinically as sutures for hundreds of years. It's so for obtained from insects or worms, silk consists of a filament core protein, termed fibroin, and a glue-like coating made up of sericin proteins. An important component of silk has an extended history of being discarded as a waste in the course of silk processing. The cost of sericin for tissue engineering is underestimated and its capability in using as regenerative remedy has simply began to be explored. Its variable amino acid composition and various functional groups confer upon it attractive bioactive proteins, which are particularly interesting for biomedical programs. Because of its antioxidant properties, moisturizing ability, and mitogenic effect on mammalian cells, sericin is beneficial in cell regeneration and tissue engineering. Research shows that keratinocytes and fibroblasts have brought about the improvement of sericin-primarily based biomaterials for skin tissue repair, in particular as wound dressings. Moreover, sericin may be used for bone tissue engineering due to its ability to set off nucleation of bone-like hydroxyapatite. Stable silk sericin biomaterials, as films, sponges, and hydrogels, are obtained by means of cross-linking, ethanol precipitation, or mixing with different polymers. Now a day, sericin may also be used for delivery of drugs due to its chemical reactivity and pH-responsiveness which facilitate the fabrication of nano and microparticles, hydrogels, and conjugated molecules, enhancing the bioactivity of drugs. In this review, we outlined the current headways from extraction of sericin till its physical properties and biomedical applications.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Sericinas/uso terapéutico , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Humanos , Sericinas/química , Sericinas/aislamiento & purificación , Sericinas/farmacología
12.
EXCLI J ; 15: 772-780, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28337108

RESUMEN

To develop bromelain capped gold nanoparticles (BRN capped Au-NPs) as the effective drug delivery carriers of the antibiotic levofloxacin (LvN) and evaluate antibacterial potential of its bioconjugated form compared to pure LvN. BRN capped Au-NPs were synthesized by in vitro method and bioconjugated to LvN using 1-ethyl-3-(3-dimethylamino-propyl)-carbodiimide as activator to form Au-BRN-LvN-NPs. These were characterized for mean particle size by dynamic light scattering analysis, zeta potential by Zetasizer nanosystem analysis and transmission electron microscopy (TEM) on carbon coated TEM copper grids by TEM respectively. Drug loading efficiency of LvN was calculated using UV-visible spectroscopy by standard curve of pure LvN. Antibacterial efficacy of Au-BRN-LvN-NPs and pure LvN was determined by evaluating minimum inhibitory concentration (MIC) against Staphylococcus aureus and Eschereschia coli. Two peaks were observed in Au-BRN-LvN-NPs spectrum one at 307 nm and other at 526 nm while one peak in BRN capped Au-NPs at 522 nm during UV spectroscopy suggesting red shift. The drug loading efficiency of LvN was found to be 84.8 ± 2.41 %. The diameter of Au-BRN-LvN-NPs and BRN capped Au-NPs were found to be (58.65 ± 2 nm, 38.11 ± 2 nm), zeta potential (-9.01 mV, -13.8 mV) and surface morphology (~13.2 nm, 11.4 nm) respectively. The MICs against S. aureus and E. coli were found to be (0.128 µg/mL, 1.10 µg/mL) for Au-BRN-LvN-NPs and (0.547 µg/mL, 1.96 µg/mL) for pure LvN. The results suggested that BRN capped Au-NPs can be used as effective drug delivery carriers of the antibiotic LvN. The Au-BRN-LvN-NPs exhibited enhanced antibacterial activity compared to pure LvN alone. (Graphical abstract see Figure 1(Fig. 1)).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA