Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Molecules ; 28(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836603

RESUMEN

The therapeutic advantages of some platinum complexes as major anticancer chemotherapeutic agents and of nucleoside analogue-based compounds as essential antiviral/antitumor drugs are widely recognized. Red blood cells (RBCs) offer a potential new strategy for the targeted release of therapeutic agents due to their biocompatibility, which can protect loaded drugs from inactivation in the blood, thus improving biodistribution. In this study, we evaluated the feasibility of loading model nucleobase-containing Pt(II) complexes into human RBCs that were highly stabilized by four N-donors and susceptible to further modification for possible antitumor/antiviral applications. Specifically, platinum-based nucleoside derivatives [PtII(dien)(N7-Guo)]2+, [PtII(dien)(N7-dGuo)]2+, and [PtII(dien)(N7-dGTP)] (dien = diethylenetriamine; Guo = guanosine; dGuo = 2'-deoxy-guanosine; dGTP = 5'-(2'-deoxy)-guanosine-triphosphate) were investigated. These Pt(II) complexes were demonstrated to be stable species suitable for incorporation into RBCs. This result opens avenues for the possible incorporation of other metalated nucleobases analogues, with potential antitumor and/or antiviral activity, into RBCs.


Asunto(s)
Antineoplásicos , Compuestos Organoplatinos , Humanos , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/metabolismo , Distribución Tisular , Platino (Metal) , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Antivirales/farmacología , Eritrocitos/metabolismo , Guanosina/metabolismo
2.
Biofactors ; 49(6): 1205-1222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409789

RESUMEN

Reduction in oxygen levels is a key feature in the physiology of the bone marrow (BM) niche where hematopoiesis occurs. The BM niche is a highly vascularized tissue and endothelial cells (ECs) support and regulate blood cell formation from hematopoietic stem cells (HSCs). While in vivo studies are limited, ECs when cultured in vitro at low O2 (<5%), fail to support functional HSC maintenance due to oxidative environment. Therefore, changes in EC redox status induced by antioxidant molecules may lead to alterations in the cellular response to hypoxia likely favoring HSC self-renewal. To evaluate the impact of redox regulation, HUVEC, exposed for 1, 6, and 24 h to 3% O2 were treated with N-(N-acetyl-l-cysteinyl)-S-acetylcysteamine (I-152). Metabolomic analyses revealed that I-152 increased glutathione levels and influenced the metabolic profiles interconnected with the glutathione system and the redox couples NAD(P)+/NAD(P)H. mRNA analysis showed a lowered gene expression of HIF-1α and VEGF following I-152 treatment whereas TRX1 and 2 were stimulated. Accordingly, the proteomic study revealed the redox-dependent upregulation of thioredoxin and peroxiredoxins that, together with the glutathione system, are the main regulators of intracellular ROS. Indeed, a time-dependent ROS production under hypoxia and a quenching effect of the molecule were evidenced. At the secretome level, the molecule downregulated IL-6, MCP-1, and PDGF-bb. These results suggest that redox modulation by I-152 reduces oxidative stress and ROS level in hypoxic ECs and may be a strategy to fine-tune the environment of an in vitro BM niche able to support functional HSC maintenance.


Asunto(s)
Células Endoteliales , NAD , Humanos , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , NAD/metabolismo , Proteómica , Oxidación-Reducción , Hipoxia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Glutatión/metabolismo , Oxígeno/metabolismo , Compuestos de Azufre , Compuestos de Sulfhidrilo
3.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240169

RESUMEN

During aging, bone marrow mesenchymal stromal cells (MSCs)-the precursors of osteoblasts-undergo cellular senescence, losing their osteogenic potential and acquiring a pro-inflammatory secretory phenotype. These dysfunctions cause bone loss and lead to osteoporosis. Prevention and intervention at an early stage of bone loss are important, and naturally active compounds could represent a valid help in addition to diet. Here, we tested the hypothesis that the combination of two pro-osteogenic factors, namely orthosilicic acid (OA) and vitamin K2 (VK2), and three other anti-inflammatory compounds, namely curcumin (CUR), polydatin (PD) and quercetin (QCT)-that mirror the nutraceutical BlastiMin Complex® (Mivell, Italy)-would be effective in promoting MSC osteogenesis, even of replicative senescent cells (sMSCs), and inhibiting their pro-inflammatory phenotype in vitro. Results showed that when used at non-cytotoxic doses, (i) the association of OA and VK2 promoted MSC differentiation into osteoblasts, even when cultured without other pro-differentiating factors; and (ii) CUR, PD and QCT exerted an anti-inflammatory effect on sMSCs, and also synergized with OA and VK2 in promoting the expression of the pivotal osteogenic marker ALP in these cells. Overall, these data suggest a potential role of using a combination of all of these natural compounds as a supplement to prevent or control the progression of age-related osteoporosis.


Asunto(s)
Enfermedades Óseas Metabólicas , Curcumina , Células Madre Mesenquimatosas , Osteoporosis , Humanos , Osteogénesis , Quercetina/uso terapéutico , Vitamina K 2/farmacología , Vitamina K 2/metabolismo , Curcumina/farmacología , Médula Ósea/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Enfermedades Óseas Metabólicas/metabolismo , Células Cultivadas , Células de la Médula Ósea
4.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175783

RESUMEN

Type 2 diabetes mellitus (T2DM) is a disease characterized by a prolonged hyperglycemic condition caused by insulin resistance mechanisms in muscle and liver, reduced insulin production by pancreatic ß cells, and a chronic inflammatory state with increased levels of the pro-inflammatory marker semaphorin 3E. Phytochemicals present in several foods have been used to complement oral hypoglycemic drugs for the management of T2DM. Notably, dipeptidyl peptidase IV (DPPIV) inhibitors have demonstrated efficacy in the treatment of T2DM. Our study aimed to investigate, in in vitro models of insulin resistance, the ability of the flavanones naringenin and hesperetin, used alone and in combination with the anti-inflammatory natural molecules curcumin, polydatin, and quercetin, to counteract the insulin resistance and pro-inflammatory molecular mechanisms that are involved in T2DM development. Our results show for the first time that the combination of naringenin, hesperetin, curcumin, polydatin, and quercetin (that mirror the nutraceutical formulation GliceFen®, Mivell, Italy) synergistically decreases expression levels of the pro-inflammatory gene SEMA3E in insulin-resistant HepG2 cells and synergistically decreases DPPIV activity in insulin-resistant Hep3B cells, indicating that the combination of these five phytochemicals is able to inhibit pro-inflammatory and insulin resistance molecular mechanisms and could represent an effective innovative complementary approach to T2DM pharmacological treatment.


Asunto(s)
Curcumina , Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Flavanonas , Resistencia a la Insulina , Semaforinas , Humanos , Curcumina/farmacología , Curcumina/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Flavanonas/química , Insulina/uso terapéutico , Quercetina/química , Semaforinas/uso terapéutico
5.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047732

RESUMEN

Sirtuin 6 (SIRT6) is a member of the mammalian NAD+-dependent deac(et)ylase sirtuin family. SIRT6's anti-inflammatory roles are emerging increasingly often in different diseases and cell types, including endothelial cells. In this study, the role of SIRT6 in pro-inflammatory conditions was investigated by engineering human umbilical vein endothelial cells to overexpress SIRT6 (SIRT6+ HUVECs). Our results showed that SIRT6 overexpression affected the levels of adhesion molecules and sustained megakaryocyte proliferation and proplatelet formation. Interestingly, the pro-inflammatory activation of the ATP/purinergic axis was reduced in SIRT6+ HUVECs. Specifically, the TNFα-induced release of ATP in the extracellular space and the increase in pannexin-1 hemichannel expression, which mediates ATP efflux, were hampered in SIRT6+ cells. Instead, NAD+ release and Connexin43 expression were not modified by SIRT6 levels. Moreover, the Ca2+ influx in response to ATP and the expression of the purinergic receptor P2X7 were decreased in SIRT6+ HUVECs. Contrary to extracellular ATP, extracellular NAD+ did not evoke pro-inflammatory responses in HUVECs. Instead, NAD+ administration reduced endothelial cell proliferation and motility and counteracted the TNFα-induced angiogenesis. Altogether, our data reinforce the view of SIRT6 activation as an anti-inflammatory approach in vascular endothelium.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Sirtuinas , Humanos , Adenosina Trifosfato , Células Endoteliales de la Vena Umbilical Humana/metabolismo , NAD , Sirtuinas/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
6.
Biomater Sci ; 11(9): 3252-3268, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36939172

RESUMEN

The application of superparamagnetic iron oxide nanoparticles (SPIONs) in drug delivery, magnetic resonance imaging, cell tracking, and hyperthermia has been long exploited regarding their inducible magnetic properties. Nevertheless, SPIONs remain rapidly cleared from the circulation by the reticuloendothelial system (RES) or mononuclear phagocyte system, with uptake dependent on several factors such as the hydrodynamic diameter, electrical charge and surface coating. This rapid clearance of SPION-based theranostic agents from circulation is one of the main challenges hampering the medical applications that differ from RES targeting. This work proposes a strategy to render biocompatible SPIONs through their encapsulation in the red blood cells (RBCs). In this work, the research has been focused on the multi-step optimization of chemical synthesis of magnetic nanoparticles (MNPs), precisely iron oxide nanoparticles (IONPs) and zinc manganese-ferrite nanoparticles (Zn/Mn FNPs), for encapsulation in human and murine RBCs. The encapsulation through the transient opening of RBC membrane pores requires extensive efforts to deliver high-quality nanoparticles in terms of chemical properties, morphology, stability and biocompatibility. After reaching this goal, in vitro experiments were performed with selected nanomaterials to investigate the potential of engineered MNP-RBC constructs in theranostic approaches.


Asunto(s)
Nanopartículas de Magnetita , Ratones , Animales , Humanos , Nanopartículas de Magnetita/química , Medicina de Precisión , Imagen por Resonancia Magnética/métodos , Sistemas de Liberación de Medicamentos , Eritrocitos/metabolismo , Nanomedicina Teranóstica/métodos
7.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982232

RESUMEN

Sinusoidal endothelial cells are the predominant vascular surface of the bone marrow and constitute the functional hematopoietic niche where hematopoietic stem and progenitor cells receive cues for self-renewal, survival, and differentiation. In the bone marrow hematopoietic niche, the oxygen tension is usually very low, and this condition affects stem and progenitor cell proliferation and differentiation and other important functions of this region. Here, we have investigated in vitro the response of endothelial cells to a marked decrease in O2 partial pressure to understand how the basal gene expression of some relevant biological factors (i.e., chemokines and interleukins) that are fundamental for the intercellular communication could change in anoxic conditions. Interestingly, mRNA levels of CXCL3, CXCL5, and IL-34 genes are upregulated after anoxia exposure but become downmodulated by sirtuin 6 (SIRT6) overexpression. Indeed, the expression levels of some other genes (such as Leukemia Inhibitory Factor (LIF)) that were not significantly affected by 8 h anoxia exposure become upregulated in the presence of SIRT6. Therefore, SIRT6 mediates also the endothelial cellular response through the modulation of selected genes in an extreme hypoxic condition.


Asunto(s)
Células Madre Hematopoyéticas , Sirtuinas , Células Madre Hematopoyéticas/metabolismo , Células Endoteliales/metabolismo , Células Cultivadas , Médula Ósea/metabolismo , Interleucinas/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
8.
Front Physiol ; 12: 632682, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679443

RESUMEN

In the bone marrow (BM) hematopoietic niche, the oxygen tension is usually very low. Such condition affects stem and progenitor cell proliferation and differentiation and, at cellular level regulates hematopoietic growth factors, chemokines and adhesion molecules expression. In turn, these molecules affect the proliferation and maturation of other cellular components of the niche. Due to the complexity of the system we started the in vitro investigations of the IL-6, IL-8, TNFα cytokines expression and the vascular endothelial growth factor (VEGF), considered key mediators of the hematopoietic niche, in human macrophages and macrophage cell line. Since in the niche the oxygen availability is mediated by red blood cells (RBCs), we have influenced the anoxic cell cultures by the administration of oxygenated or deoxygenated RBCs (deoxy RBCs). The results reported in this brief paper show that the presence of RBCs up-regulates IL-8 mRNA while IL-6 and VEGF mRNA expression appears down-regulated. This does not occur when deoxy RBCs are used. Moreover, it appears that the administration of RBCs leads to an increase of TNFα expression levels in MonoMac 6 (MM6). Interestingly, the modulation of these factors likely occurs in a hypoxia-inducible factor-1α (HIF-1α) independent manner. Considering the role of oxygen in the hematopoietic niche further studies should explore these preliminary observations in more details.

9.
Turk Pediatri Ars ; 55(Suppl 1): 85-97, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32963484

RESUMEN

It is described as the eight small European Countries Initiative. The initiative developed during the 63rd session of the World Health Organization Regional Committee for Europe, held in 2013 in Istanbul, Turkey. Eight European countries counting a population of less than 1 million, gathered together under the auspices of the World Health Organization, to form the European Small Countries Initiative for Health. The eight countries include Andorra, Cyprus, Iceland, Luxembourg, Malta, Monaco, Montenegro, and San Marino. The main aim of the small countries network is to foster a common political commitment, useful to develop locally good health practices. A specific goal was the implementation of the Health 2020 European policy framework and strategy for the 21st century, in the context of countries with small populations. The rational is in fact, that countries with smaller populations have a significant advantage to promote and implement policies and strategies for health and well-being that draw on the contribution of many sectors. The eight small European Countries Initiative particularly aims at amplifying the voice of small countries in European and global health contexts, reaching out to local and international legislators and rulers. It further aims at sharing existing resources among members, with the intent to maximize assets, and innovating and applying solutions to increase capacity to improve health. The founding principle of the eight countries initiative network, is that the experiences of small countries can provide useful learning opportunities, particularly in the healthcare area, that can then be used at regional level in more populous nations.

10.
Nutrients ; 12(9)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825564

RESUMEN

This review summarizes the latest advancements in phytochemicals as functional antiviral agents. We focused on flavonoids, like apigenin, vitexin, quercetin, rutin and naringenin, which have shown a wide range of biological effects including antiviral activities. The molecular mechanisms of their antiviral effects mainly consist in the inhibition of viral neuraminidase, proteases and DNA/RNA polymerases, as well as in the modification of various viral proteins. Mixtures of different flavonoids or combination of flavonoids with antiviral synthetic drugs provide an enhancement of their antiviral effects. Recent strategies in drug delivery significantly contribute to overcoming the low bioavailability of flavonoids. Frequent viral infections worldwide have led to the need for new effective antiviral agents, which can be identified among the various phytochemicals. In this light, screening the antiviral activities of a cocktail of flavonoids would be advantageous in order to prevent viral infections and improve current antiviral therapies.


Asunto(s)
Antivirales , Sistemas de Liberación de Medicamentos , Flavonoides/administración & dosificación , Flavonoides/farmacología , Apigenina/química , Apigenina/farmacología , Disponibilidad Biológica , Combinación de Medicamentos , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Flavanonas/química , Flavanonas/farmacología , Flavonoides/química , Flavonoides/farmacocinética , Humanos , Neuraminidasa/antagonistas & inhibidores , Quercetina/química , Quercetina/farmacología , Rutina/química , Rutina/farmacología , Inhibidores de Proteasa Viral , Proteínas Virales/metabolismo , Virosis/tratamiento farmacológico , Virosis/prevención & control , Virosis/virología , Virus/enzimología , Virus/metabolismo
11.
Nanomedicine (Lond) ; 15(8): 739-753, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32207374

RESUMEN

Aim: Magnetic particle imaging (MPI) is highly promising for biomedical applications, but optimal tracers for MPI, namely superparamagnetic iron oxide-based contrast agents, are still lacking. Materials & methods: The encapsulation of commercially available nanoparticles, specifically synomag®-D and perimag®, into human red blood cells (RBCs) was performed by a hypotonic dialysis and isotonic resealing procedure. The amounts of superparamagnetic iron oxide incorporated into RBCs were determined by Fe quantification using nuclear magnetic resonance and magnetic particle spectroscopy. Results: Perimag-COOH nanoparticles were identified as the best nanomaterial for encapsulation in RBCs. Perimag-COOH-loaded RBCs proved to be viable cells showing a good magnetic particle spectroscopy performance, while the magnetic signal of synomag-D-COOH-loaded RBCs dropped sharply. Conclusion: Perimag-COOH-loaded RBCs could be a potential tool for MPI diagnostic applications.


Asunto(s)
Medios de Contraste , Eritrocitos , Nanopartículas de Magnetita , Humanos , Imagen por Resonancia Magnética , Magnetismo
12.
ACS Appl Mater Interfaces ; 11(12): 11194-11201, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30830737

RESUMEN

The active and passive electrophysiological properties of blood and tissue have been utilized in a vast array of clinical techniques to noninvasively characterize anatomy and physiology and to diagnose a wide variety of pathologies. However, the accuracy and spatial resolution of such techniques are limited by several factors, including an ill-posed inverse problem, which determines biological parameters and signal sources from surface potentials. Here, we propose a method to noninvasively modulate tissue conductivity by aligning superparamagnetic iron oxide-loaded erythrocytes with an oscillating magnetic field. A prototype device is presented, which incorporates a three-dimensional set of Helmholtz coil pairs and fluid-channel-embedded electrode arrays. Alignment of loaded cells (∼11 mM iron) within a field of 12 mT is demonstrated, and this directed reorientation is shown to alter the conductivity of blood by ∼5 and ∼0.5% for stationary and flowing blood, respectively, within fields as weak as 6-12 mT. Focal modulation of conductivity could drastically improve numerous bioimpedance-based detection modalities.


Asunto(s)
Compuestos Férricos/química , Nanopartículas de Magnetita/química , Células Cultivadas , Conductividad Eléctrica , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Humanos , Campos Magnéticos , Nanopartículas de Magnetita/toxicidad , Microscopía Electrónica de Transmisión , Análisis de Matrices Tisulares
13.
Nanomedicine (Lond) ; 13(7): 675-687, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29488423

RESUMEN

AIM: The encapsulation of superparamagnetic iron oxide contrast agents in red blood cells (RBCs) could overcome their rapid removal by reticulo-endothelial system improving their stability in blood circulation. MATERIALS & METHODS: Murine ferucarbotran-loaded RBCs were tested in vivo as new contrasting agents in MRI application. RESULTS: A superior visualization of organs and cerebral vessels was evidenced in ferucarbotran-loaded RBCs-treated mice compared with the controls. The signal enhancement lasted for days, while the contrast from bulk ferucarbotran disappeared after few minutes. CONCLUSION: Ferucarbotran-loaded RBCs showed to improve diagnostic imaging and their use may extend the time frame for MRI and magnetic resonance angiography since to date the time frame for data acquisition has been limited to the first pass.


Asunto(s)
Vasos Sanguíneos/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Dextranos/administración & dosificación , Angiografía por Resonancia Magnética/métodos , Nanopartículas de Magnetita/administración & dosificación , Animales , Vasos Sanguíneos/fisiopatología , Corteza Cerebral/irrigación sanguínea , Medios de Contraste/administración & dosificación , Eritrocitos/efectos de los fármacos , Humanos , Ratones
14.
Exp Hematol ; 51: 36-46, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28456746

RESUMEN

Recently, NOD-SCID IL2Rγ-/- (NSG) mice were implanted with human mesenchymal stromal cells (MSCs) in the presence of ceramic scaffolds or Matrigel to mimic the human bone marrow (BM) microenvironment. This approach allowed the engraftment of leukemic samples that failed to engraft in NSG mice without humanized niches and resulted in a better preservation of leukemic stem cell self-renewal properties. To further improve our humanized niche scaffold model, we genetically engineered human MSCs to secrete human interleukin-3 (IL-3) and thrombopoietin (TPO). In vitro, these IL-3- and TPO-producing MSCs were superior in expanding human cord blood (CB) CD34+ hematopoietic stem/progenitor cells. MLL-AF9-transduced CB CD34+ cells could be transformed efficiently along myeloid or lymphoid lineages on IL-3- and TPO-producing MSCs. In vivo, these genetically engineered MSCs maintained their ability to differentiate into bone, adipocytes, and other stromal components. Upon transplantation of MLL-AF9-transduced CB CD34+ cells, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) developed in engineered scaffolds, in which a significantly higher percentage of myeloid clones was observed in the mouse compartments compared with previous models. Engraftment of primary AML, B-cell ALL, and biphenotypic acute leukemia (BAL) patient samples was also evaluated, and all patient samples could engraft efficiently; the myeloid compartment of the BAL samples was better preserved in the human cytokine scaffold model. In conclusion, we show that we can genetically engineer the ectopic human BM microenvironment in a humanized scaffold xenograft model. This approach will be useful for functional study of the importance of niche factors in normal and malignant human hematopoiesis.


Asunto(s)
Diferenciación Celular , Ingeniería Genética , Interleucina-3 , Células Madre Mesenquimatosas/metabolismo , Nicho de Células Madre , Trombopoyetina , Andamios del Tejido/química , Animales , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Interleucina-3/biosíntesis , Interleucina-3/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Trasplante de Células Madre Mesenquimatosas , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Trombopoyetina/biosíntesis , Trombopoyetina/genética
15.
Bioconjug Chem ; 28(2): 524-538, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28068077

RESUMEN

Poly(propyleneimine) glycodendrimers fully modified with maltose units were administered to different cancer cell lines and their effect on cell viability was evaluated by using MTS assay and flow cytometry. The mechanism of dendrimer-cell interactions was investigated by the electron paramagnetic resonance (EPR) technique by using a new nitroxide-conjugated glycodendrimer. The nitroxide groups did not modify both the biological properties (cell viability and apoptosis degree) of the dendrimers in the presence of the cells and the dendrimer-cell interactions. Since this class of dendrimers is already known to be biocompatible for human healthy cells, noncancer cells such as human peripheral blood mononuclear cells (PBMCs) and macrophages were also treated with the glycodendrimer, and EPR spectra of the nitroxide-conjugated glycodendrimer were compared for cancer and noncancer cells. It was found that this dendrimer selectively affects the cell viability of tumor cells, while, surprisingly, PBMC proliferation is induced. Moreover, H-bond-active glycodendrimer-cell interactions were different for the different cancer cell lines and noncancer cells. The nitroxide-conjugated glycodendrimer was able to interact with the cell membrane and eventually cross it, getting in contact with cytosol antioxidants. This study helps to clarify the potential anticancer effect of this class of dendrimers opening to future applications of these macromolecules as new antitumor agents.


Asunto(s)
Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Dendrímeros/farmacología , Óxidos de Nitrógeno/farmacología , Polipropilenos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dendrímeros/química , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Maltosa/análogos & derivados , Maltosa/farmacología , Neoplasias/tratamiento farmacológico , Óxidos de Nitrógeno/química , Polipropilenos/química
16.
Biochim Biophys Acta Gen Subj ; 1861(2): 354-364, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27913191

RESUMEN

BACKGROUND: The membrane-bound isoform of the receptor for advanced glycation end products (FL-RAGE) is primarily expressed by alveolar epithelial cells and undergoes shedding by the protease ADAM10, giving rise to soluble cleaved RAGE (cRAGE). RAGE has been associated with the pathogenesis of several acute and chronic lung disorders. Whether the proteolysis of FL-RAGE is altered by a given inflammatory stimulus is unknown. Pseudomonas aeruginosa causes nosocomial infections in hospitalized patients and is the major pathogen associated with chronic lung diseases. METHODS: P. aeruginosa was injected in Rage-/- and wild-type mice and the impact on RAGE expression and shedding, levels of inflammation and bacterial growth was determined. RESULTS: Acute P. aeruginosa lung infection in mice induces a reduction of the active form of ADAM10, which determines an increase of FL-RAGE expression on alveolar cells and a concomitant decrease of pulmonary cRAGE levels. This was associated with massive recruitment of leukocytes and release of pro-inflammatory factors, tissue damage and relocation of cRAGE in the alveolar and bronchial cavities. The administration of sRAGE worsened bacterial burden and neutrophils infiltration. RAGE genetic deficiency reduced the susceptibility to P. aeruginosa infection, mitigating leukocyte recruitment, inflammatory molecules production, and bacterial growth. CONCLUSIONS: These data are the first to suggest that inhibition of FL-RAGE shedding, by affecting the FL-RAGE/cRAGE levels, is a novel mechanism for controlling inflammation to acute P. aeruginosa pneumonia. sRAGE in the alveolar space sustains inflammation in this setting. GENERAL SIGNIFICANCE: RAGE shedding may determine the progression of inflammatory lung diseases.


Asunto(s)
Inflamación/metabolismo , Pulmón/metabolismo , Pulmón/microbiología , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Proteína ADAM10/metabolismo , Animales , Productos Finales de Glicación Avanzada/metabolismo , Inflamación/microbiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo
17.
Nanomedicine (Lond) ; 11(21): 2781-2795, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27739933

RESUMEN

AIM: The biomedical application of contrast agents based on superparamagnetic iron oxide nanoparticles is still limited because of their short intravascular half-life. The potential of red blood cells (RBCs) loaded with new ferucarbotran nanoparticles as magnetic contrast agents with longer blood retention time has been investigated. MATERIALS & METHODS: Ferucarbotran was loaded into RBCs by a procedure of hypotonic dialysis and isotonic resealing. Ferucarbotran amounts encapsulated in RBCs were determined by NMR. The survival of ferucarbotran-loaded RBCs and bulk ferucarbotran was evaluated in the mouse bloodstream. RESULTS: Blood retention time of these RBC constructs is longer (∼14 days) than the bulk ferucarbotran (∼1 h) with a slower Fe clearance from liver and spleen. CONCLUSION: Ferucarbotran-loaded RBCs could be used as potential contrasting agents for diagnostic applications in MRI/magnetic particle imaging.

18.
Blood ; 128(25): 2949-2959, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-27733356

RESUMEN

To begin to understand the mechanisms that regulate self-renewal, differentiation, and transformation of human hematopoietic stem cells or to evaluate the efficacy of novel treatment modalities, stem cells need to be studied in their own species-specific microenvironment. By implanting ceramic scaffolds coated with human mesenchymal stromal cells into immune-deficient mice, we were able to mimic the human bone marrow niche. Thus, we have established a human leukemia xenograft mouse model in which a large cohort of patient samples successfully engrafted, which covered all of the important genetic and risk subgroups. We found that by providing a humanized environment, stem cell self-renewal properties were better maintained as determined by serial transplantation assays and genome-wide transcriptome studies, and less clonal drift was observed as determined by exome sequencing. The human leukemia xenograft mouse models that we have established here will serve as an excellent resource for future studies aimed at exploring novel therapeutic approaches.


Asunto(s)
Médula Ósea/patología , Leucemia Mieloide Aguda/patología , Nicho de Células Madre , Andamios del Tejido/química , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Autorrenovación de las Células , Separación Celular , Células Clonales , Femenino , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/citología , Humanos , Leucemia Mieloide Aguda/genética , Células Madre Mesenquimatosas/citología , Ratones , Fenotipo , Células del Estroma/patología
19.
Blood ; 128(20): 2435-2449, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27574188

RESUMEN

Deep venous thrombosis (DVT) is one of the most common cardiovascular diseases, but its pathophysiology remains incompletely understood. Although sterile inflammation has recently been shown to boost coagulation during DVT, the underlying molecular mechanisms are not fully resolved, which could potentially identify new anti-inflammatory approaches to prophylaxis and therapy of DVT. Using a mouse model of venous thrombosis induced by flow reduction in the vena cava inferior, we identified blood-derived high-mobility group box 1 protein (HMGB1), a prototypical mediator of sterile inflammation, to be a master regulator of the prothrombotic cascade involving platelets and myeloid leukocytes fostering occlusive DVT formation. Transfer of platelets into Hmgb1-/- chimeras showed that this cell type is the major source of HMGB1, exposing reduced HMGB1 on their surface upon activation thereby enhancing the recruitment of monocytes. Activated leukocytes in turn support oxidation of HMGB1 unleashing its prothrombotic activity and promoting platelet aggregation. This potentiates the amount of HMGB1 and further nurtures the accumulation and activation of monocytes through receptor for advanced glycation end products (RAGE) and Toll-like receptor 2, leading to local delivery of monocyte-derived tissue factor and cytokines. Moreover, disulfide HMGB1 facilitates formation of prothrombotic neutrophil extracellular traps (NETs) mediated by RAGE, exposing additional HMGB1 on their extracellular DNA strands. Eventually, a vicious circle of coagulation and inflammation is set in motion leading to obstructive DVT formation. Therefore, platelet-derived disulfide HMGB1 is a central mediator of the sterile inflammatory process in venous thrombosis and could be an attractive target for an anti-inflammatory approach for DVT prophylaxis.


Asunto(s)
Plaquetas/metabolismo , Proteína HMGB1/fisiología , Trombosis de la Vena/genética , Animales , Plaquetas/patología , Disulfuros/química , Disulfuros/metabolismo , Proteína HMGB1/química , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Trombosis de la Vena/metabolismo , Trombosis de la Vena/patología
20.
Adv Drug Deliv Rev ; 106(Pt A): 73-87, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27189231

RESUMEN

Pharmacokinetics, biodistribution, and biological activity are key parameters that determine the success or failure of therapeutics. Many developments intended to improve their in vivo performance, aim at modulating concentration, biodistribution, and targeting to tissues, cells or subcellular compartments. Erythrocyte-based drug delivery systems are especially efficient in maintaining active drugs in circulation, in releasing them for several weeks or in targeting drugs to selected cells. Erythrocytes can also be easily processed to entrap the desired pharmaceutical ingredients before re-infusion into the same or matched donors. These carriers are totally biocompatible, have a large capacity and could accommodate traditional chemical entities (glucocorticoids, immunossuppresants, etc.), biologics (proteins) and/or contrasting agents (dyes, nanoparticles). Carrier erythrocytes have been evaluated in thousands of infusions in humans proving treatment safety and efficacy, hence gaining interest in the management of complex pathologies (particularly in chronic treatments and when side-effects become serious issues) and in new diagnostic approaches.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Transfusión de Eritrocitos , Eritrocitos/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/sangre , Animales , Medios de Contraste/administración & dosificación , Sistemas de Liberación de Medicamentos/efectos adversos , Transfusión de Eritrocitos/efectos adversos , Eritrocitos/citología , Humanos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA