Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
2.
Res Pract Thromb Haemost ; 8(4): 102432, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38854821

RESUMEN

Here, we present a series of illustrated capsules from the State of the Art (SOA) speakers at the 2024 International Society on Thrombosis and Haemostasis Congress in Bangkok, Thailand. This year's Congress marks the first time that the International Society on Thrombosis and Haemostasis has held its flagship scientific meeting in Southeast Asia and is the first to be organized by an international Planning Committee. The Bangkok program will feature innovative science and clinical updates from around the world, reflecting the diversity and multidisciplinary growth of our field. In these illustrated SOA capsules, you will find an exploration of novel models of thrombosis and bleeding and biomaterial discoveries that can trigger or block coagulation. Thromboinflammation is now understood to drive many disease states, and the SOA speakers cover cellular and coagulation responses to COVID-19 and other infections. The theme of crosstalk between coagulation and inflammation expands with capsules on protein S signaling, complement, and fibrinolytic inhibitors. Novel agents for hemophilia and thrombosis prevention are introduced. Challenging clinical conditions are also covered, such as inherited platelet disorders and antiphospholipid antibody syndrome. The scientific program in Bangkok will also showcase the work of clinicians and scientists from all parts of the world and chronicle real-world challenges. For example, 2 SOA capsules address the diagnosis and management of von Willebrand disease in low-income settings. Take some time to browse through these short illustrated reviews; we're sure that you'll be entertained, educated, and inspired to further explore the world of thrombosis and hemostasis.

4.
Proc Natl Acad Sci U S A ; 121(6): e2300644120, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38306481

RESUMEN

It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin's role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , Ratones , Células Endoteliales , Proteoma , Péptidos
7.
Part Fibre Toxicol ; 20(1): 32, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580758

RESUMEN

BACKGROUND: Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) has been reported to exert strong pro-inflammatory and pro-fibrotic adjuvant effects in mouse models of allergic lung disease. However, the molecular mechanisms through which MWCNTs exacerbate allergen-induced lung disease remain to be elucidated. We hypothesized that protease-activated receptor 2 (PAR2), a G-protein coupled receptor previously implicated in the pathogenesis of various diseases including pulmonary fibrosis and asthma, may play an important role in the exacerbation of house dust mite (HDM) allergen-induced lung disease by MWCNTs. METHODS: Wildtype (WT) male C57BL6 mice and Par2 KO mice were exposed to vehicle, MWCNTs, HDM extract, or both via oropharyngeal aspiration 6 times over a period of 3 weeks and were sacrificed 3-days after the final exposure (day 22). Bronchoalveolar lavage fluid (BALF) was harvested to measure changes in inflammatory cells, total protein, and lactate dehydrogenase (LDH). Lung protein and RNA were assayed for pro-inflammatory or profibrotic mediators, and formalin-fixed lung sections were evaluated for histopathology. RESULTS: In both WT and Par2 KO mice, co-exposure to MWCNTs synergistically increased lung inflammation assessed by histopathology, and increased BALF cellularity, primarily eosinophils, as well as BALF total protein and LDH in the presence of relatively low doses of HDM extract that alone produced little, if any, lung inflammation. In addition, both WT and par2 KO mice displayed a similar increase in lung Cc1-11 mRNA, which encodes the eosinophil chemokine CCL-11, after co-exposure to MWCNTs and HDM extract. However, Par2 KO mice displayed significantly less airway fibrosis as determined by quantitative morphometry compared to WT mice after co-exposure to MWCNTs and HDM extract. Accordingly, at both protein and mRNA levels, the pro-fibrotic mediator arginase 1 (ARG-1), was downregulated in Par2 KO mice exposed to MWCNTs and HDM. In contrast, phosphorylation of the pro-inflammatory transcription factor NF-κB and the pro-inflammatory cytokine CXCL-1 was increased in Par2 KO mice exposed to MWCNTs and HDM. CONCLUSIONS: Our study indicates that PAR2 mediates airway fibrosis but not eosinophilic lung inflammation induced by co-exposure to MWCNTs and HDM allergens.


Asunto(s)
Hipersensibilidad , Nanotubos de Carbono , Neumonía , Fibrosis Pulmonar , Receptor PAR-2 , Animales , Masculino , Ratones , Alérgenos/toxicidad , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Fibrosis , Hipersensibilidad/metabolismo , Pulmón/metabolismo , Ratones Endogámicos C57BL , Nanotubos de Carbono/toxicidad , Neumonía/patología , Fibrosis Pulmonar/metabolismo , Pyroglyphidae , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , ARN Mensajero/metabolismo
8.
J Thromb Haemost ; 21(8): 2236-2247, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37068592

RESUMEN

BACKGROUND: Thromboelastography (TEG) is used for real-time determination of hemostatic status in patients with acute risk of bleeding. Thrombin is thought to drive clotting in TEG through generation of polymerized fibrin and activation of platelets through protease-activated receptors (PARs). However, the specific role of platelet agonist receptors and signaling in TEG has not been reported. OBJECTIVES: Here, we investigated the specific receptors and signaling pathways required for platelet function in TEG using genetic and pharmacologic inhibition of platelet proteins in mouse and human blood samples. METHODS: Clotting parameters (R time, α-angle [α], and maximum amplitude [MA]), were determined in recalcified, kaolin-triggered citrated blood samples using a TEG 5000 analyzer. RESULTS: We confirmed the requirement of platelets, platelet contraction, and αIIbß3 integrin function for normal α and MA. Loss of the integrin adaptor Talin1 in megakaryocytes/platelets (Talin1mKO) also reduced α and MA, but only minimal defects were observed in samples from mice lacking Rap1 GTPase signaling. PAR4mKO samples showed impaired α but normal MA. However, impaired TEG traces similar to those in platelet-depleted samples were observed with samples from PAR4mKO mice depleted of glycoprotein VI on platelets or with addition of a Syk inhibitor. We reproduced these results in human blood with combined inhibition of PAR1, PAR4, and Syk. CONCLUSION: Our results demonstrate that standard TEG is not sensitive to platelet signaling pathways critical for integrin inside-out activation and platelet hemostatic function. Furthermore, we provide the first evidence that PARs and glycoprotein VI play redundant roles in platelet-mediated clot contraction in TEG.


Asunto(s)
Plaquetas , Hemostáticos , Animales , Humanos , Ratones , Plaquetas/metabolismo , Glicoproteínas/metabolismo , Integrinas/metabolismo , Receptores Proteinasa-Activados/metabolismo , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Tromboelastografía/métodos
9.
Blood Adv ; 7(10): 1945-1953, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-36477178

RESUMEN

The chemotherapeutic drug doxorubicin is cardiotoxic and can cause irreversible heart failure. In addition to being cardiotoxic, doxorubicin also induces the activation of coagulation. We determined the effect of thrombin-mediated activation of protease-activated receptor 1 (PAR1) on doxorubicin-induced cardiac injury. Administration of doxorubicin to mice resulted in a significant increase in plasma prothrombin fragment 1+2, thrombin-antithrombin complexes, and extracellular vesicle tissue factor activity. Doxorubicin-treated mice expressing low levels of tissue factor, but not factor XII-deficient mice, had reduced plasma thrombin-antithrombin complexes compared to controls. To evaluate the role of thrombin-mediated activation of PAR1, transgenic mice insensitive to thrombin (Par1R41Q) or activated protein C (Par1R46Q) were subjected to acute and chronic models of doxorubicin-induced cardiac injury and compared with Par1 wild-type (Par1+/+) and PAR1 deficient (Par1-/-) mice. Par1R41Q and Par1-/- mice, but not Par1R46Q mice, demonstrated similar reductions in the cardiac injury marker cardiac troponin I, preserved cardiac function, and reduced cardiac fibrosis compared to Par1+/+ controls after administration of doxorubicin. Furthermore, inhibition of Gαq signaling downstream of PAR1 with the small molecule inhibitor Q94 significantly preserved cardiac function in Par1+/+ mice, but not in Par1R41Q mice subjected to the acute model of cardiac injury when compared to vehicle controls. In addition, mice with PAR1 deleted in either cardiomyocytes or cardiac fibroblasts demonstrated reduced cardiac injury compared to controls. Taken together, these data suggest that thrombin-mediated activation of PAR1 contributes to doxorubicin-induced cardiac injury.


Asunto(s)
Receptor PAR-1 , Trombina , Ratones , Animales , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Trombina/metabolismo , Tromboplastina , Doxorrubicina/efectos adversos , Antitrombinas
10.
Front Immunol ; 13: 1039843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451834

RESUMEN

In the broad range of human diseases, thrombo-inflammation appears as a clinical manifestation. Clinically, it is well characterized in context of superficial thrombophlebitis that is recognized as thrombosis and inflammation of superficial veins. However, it is more hazardous when developed in the microvasculature of injured/inflamed/infected tissues and organs. Several diseases like sepsis and ischemia-reperfusion can cause formation of microvascular thrombosis subsequently leading to thrombo-inflammation. Thrombo-inflammation can also occur in cases of antiphospholipid syndrome, preeclampsia, sickle cell disease, bacterial and viral infection. One of the major contributors to thrombo-inflammation is the loss of normal anti-thrombotic and anti-inflammatory potential of the endothelial cells of vasculature. This manifest itself in the form of dysregulation of the coagulation pathway and complement system, pathologic platelet activation, and increased recruitment of leukocyte within the microvasculature. The role of platelets in hemostasis and formation of thrombi under pathologic and non-pathologic conditions is well established. Platelets are anucleate cells known for their essential role in primary hemostasis and the coagulation pathway. In recent years, studies provide strong evidence for the critical involvement of platelets in inflammatory processes like acute ischemic stroke, and viral infections like Coronavirus disease 2019 (COVID-19). This has encouraged the researchers to investigate the contribution of platelets in the pathology of various thrombo-inflammatory diseases. The inhibition of platelet surface receptors or their intracellular signaling which mediate initial platelet activation and adhesion might prove to be suitable targets in thrombo-inflammatory disorders. Thus, the present review summarizes the concept and mechanism of platelet signaling and briefly discuss their role in sterile and non-sterile thrombo-inflammation, with the emphasis on role of platelets in COVID-19 induced thrombo-inflammation. The aim of this review is to summarize the recent developments in deciphering the role of the platelets in thrombo-inflammation and discuss their potential as pharmaceutical targets.


Asunto(s)
COVID-19 , Accidente Cerebrovascular Isquémico , Humanos , Femenino , Embarazo , Células Endoteliales , Plaquetas , Inflamación
11.
PLoS Pathog ; 18(1): e1010227, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041705

RESUMEN

The blood-clotting protein fibrin(ogen) plays a critical role in host defense against invading pathogens, particularly against peritoneal infection by the Gram-positive microbe Staphylococcus aureus. Here, we tested the hypothesis that direct binding between fibrin(ogen) and S. aureus is a component of the primary host antimicrobial response mechanism and prevention of secondary microbe dissemination from the peritoneal cavity. To establish a model system, we showed that fibrinogen isolated from FibγΔ5 mice, which express a mutant form lacking the final 5 amino acids of the fibrinogen γ chain (termed fibrinogenγΔ5), did not support S. aureus adherence when immobilized and clumping when in suspension. In contrast, purified wildtype fibrinogen supported robust adhesion and clumping that was largely dependent on S. aureus expression of the receptor clumping factor A (ClfA). Following peritoneal infection with S. aureus USA300, FibγΔ5 mice displayed worse survival compared to WT mice coupled to reduced bacterial killing within the peritoneal cavity and increased dissemination of the microbes into circulation and distant organs. The failure of acute bacterial killing, but not enhanced dissemination, was partially recapitulated by mice infected with S. aureus USA300 lacking ClfA. Fibrin polymer formation and coagulation transglutaminase Factor XIII each contributed to killing of the microbes within the peritoneal cavity, but only elimination of polymer formation enhanced systemic dissemination. Host macrophage depletion or selective elimination of the fibrin(ogen) ß2-integrin binding motif both compromised local bacterial killing and enhanced S. aureus systemic dissemination, suggesting fibrin polymer formation in and of itself was not sufficient to retain S. aureus within the peritoneal cavity. Collectively, these findings suggest that following peritoneal infection, the binding of S. aureus to stabilized fibrin matrices promotes a local, macrophage-mediated antimicrobial response essential for prevention of microbe dissemination and downstream host mortality.


Asunto(s)
Fibrinógeno/inmunología , Peritonitis/inmunología , Infecciones Estafilocócicas/inmunología , Animales , Coagulasa/inmunología , Coagulasa/metabolismo , Fibrina/metabolismo , Ratones , Peritonitis/metabolismo , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/inmunología , Staphylococcus aureus/metabolismo
12.
J Thromb Haemost ; 20(2): 422-433, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34689407

RESUMEN

BACKGROUND: Protease-activated receptor 4 (PAR4) is expressed by a wide variety of cells, including megakaryocytes/platelets, immune cells, cardiomyocytes, and lung epithelial cells. It is the only functional thrombin receptor on murine platelets. A global deficiency of PAR4 is associated with impaired hemostasis and reduced thrombosis. OBJECTIVE: We aimed to generate a mouse line with a megakaryocyte/platelet-specific deletion of PAR4 (PAR4fl/fl ;PF4Cre+ ) and use the mouse line to investigate the role of platelet PAR4 in hemostasis and thrombosis in mice. METHODS: Platelets from PAR4fl/fl ;PF4Cre+ were characterized in vitro. Arterial and venous thrombosis was analyzed. Hemostatic plug formation was analyzed using a saphenous vein laser injury model in mice with global or megakaryocyte/platelet-specific deletion of PAR4 or wild-type mice treated with thrombin or glycoprotein VI (GPVI) inhibitors. RESULTS: PAR4fl/fl ;PF4Cre+ platelets were unresponsive to thrombin or specific PAR4 stimulation but not to other agonists. PAR4-/- and PAR4fl/fl ;PF4Cre+ mice both exhibited a similar reduction in arterial thrombosis compared to their respective controls. More importantly, we show for the first time that platelet PAR4 is critical for venous thrombosis in mice. In addition, PAR4-/- mice and PAR4fl/fl ;PF4Cre+ mice exhibited a similar impairment in hemostatic plug stability in a saphenous vein laser injury model. Inhibition of thrombin in wild-type mice gave a similar phenotype. Combined PAR4 deficiency on platelets with GPVI inhibition did not impair hemostatic plug formation but further reduced plug stability. CONCLUSION: We generated a novel PAR4fl/fl ;PF4Cre+ mouse line. We used this mouse line to show that PAR4 signaling in platelets is critical for arterial and venous thrombosis and hemostatic plug stability.


Asunto(s)
Hemostáticos , Trombosis , Animales , Plaquetas , Hemostasis , Ratones , Activación Plaquetaria/fisiología , Agregación Plaquetaria , Receptores de Trombina/genética , Trombina , Trombosis/genética
13.
Front Immunol ; 12: 772859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858432

RESUMEN

The influenza A virus (IAV) causes a respiratory tract infection with approximately 10% of the population infected by the virus each year. Severe IAV infection is characterized by excessive inflammation and tissue pathology in the lungs. Platelet and neutrophil recruitment to the lung are involved in the pathogenesis of IAV, but the specific mechanisms involved have not been clarified. Using confocal intravital microscopy in a mouse model of IAV infection, we observed profound neutrophil recruitment, platelet aggregation, neutrophil extracellular trap (NET) production and thrombin activation within the lung microvasculature in vivo. Importantly, deficiency or antagonism of the protease-activated receptor 4 (PAR4) reduced platelet aggregation, NET production, and neutrophil recruitment. Critically, inhibition of thrombin or PAR4 protected mice from virus-induced lung tissue damage and edema. Together, these data imply thrombin-stimulated platelets play a critical role in the activation/recruitment of neutrophils, NET release and directly contribute to IAV pathogenesis in the lung.


Asunto(s)
Trastornos de la Coagulación Sanguínea/inmunología , Plaquetas/inmunología , Trampas Extracelulares/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Pulmón/inmunología , Infecciones por Orthomyxoviridae/inmunología , Animales , Trastornos de la Coagulación Sanguínea/metabolismo , Trastornos de la Coagulación Sanguínea/virología , Plaquetas/metabolismo , Plaquetas/virología , Modelos Animales de Enfermedad , Trampas Extracelulares/metabolismo , Trampas Extracelulares/virología , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Gripe Humana/metabolismo , Gripe Humana/virología , Pulmón/metabolismo , Pulmón/virología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/virología , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Agregación Plaquetaria/inmunología
14.
Front Immunol ; 12: 791017, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925374

RESUMEN

Background: Innate immune responses to influenza A virus (IAV) infection are initiated in part by toll-like receptor 3 (TLR3). TLR3-dependent signaling induces an antiviral immune response and an NFκB-dependent inflammatory response. Protease-activated receptor 2 (PAR2) inhibits the antiviral response and enhances the inflammatory response. PAR2 deficiency protected mice during IAV infection. However, the PAR2 expressing cell-types contributing to IAV pathology in mice and the mechanism by which PAR2 contributes to IAV infection is unknown. Methods: IAV infection was analyzed in global (Par2-/- ), myeloid (Par2fl/fl;LysMCre+) and lung epithelial cell (EpC) Par2 deficient (Par2fl/fl ;SPCCre+) mice and their respective controls (Par2+/+ and Par2fl/fl). In addition, the effect of PAR2 activation on polyinosinic-polycytidylic acid (poly I:C) activation of TLR3 was analyzed in bone marrow-derived macrophages (BMDM). Lastly, we determined the effect of PAR2 inhibition in wild-type (WT) mice. Results: After IAV infection, Par2-/- and mice with myeloid Par2 deficiency exhibited increased survival compared to infected controls. The improved survival was associated with reduced proinflammatory mediators and reduced cellular infiltration in bronchoalveolar lavage fluid (BALF) of Par2-/- and Par2fl/fl;LysMCre+ 3 days post infection (dpi) compared to infected control mice. Interestingly, Par2fl/fl;SPCCre+ mice showed no survival benefit compared to Par2fl/fl . In vitro studies showed that Par2-/- BMDM produced less IL6 and IL12p40 than Par2+/+ BMDM after poly I:C stimulation. In addition, activation of PAR2 on Par2+/+ BMDM increased poly I:C induction of IL6 and IL12p40 compared to poly I:C stimulation alone. Importantly, PAR2 inhibition prior to IAV infection protect WT mice. Conclusion: Global Par2 or myeloid cell but not lung EpC Par2 deficiency was associated with reduced BALF inflammatory markers and reduced IAV-induced mortality. Our study suggests that PAR2 may be a therapeutic target to reduce IAV pathology.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae/mortalidad , Receptor PAR-2/fisiología , Animales , Citocinas/análisis , Citocinas/biosíntesis , Femenino , Interferón beta/biosíntesis , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Mieloides/fisiología , Neutrófilos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Receptor PAR-2/deficiencia
15.
J Thromb Haemost ; 19(11): 2652-2658, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34418279

RESUMEN

Tissue factor (TF) is induced in a variety of cell types during viral infection, which likely contributes to disseminated intravascular coagulation and thrombosis. TF-expressing cells also release TF-positive extracellular vesicles (EVs) into the circulation that can be measured using an EVTF activity assay. This review summarizes studies that analyze TF expression, TF-positive EVs, activation of coagulation, and thrombosis after infection with influenza A virus (IAV) and coronaviruses (CoVs), including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome CoV (MERS-CoV). The current pandemic of coronavirus disease 2019 (COVID-19) is caused by infection with SARS-CoV-2. Infection of mice with IAV increased TF expression in lung epithelial cells as well as increased EVTF activity and activation of coagulation in the bronchoalveolar lavage fluid (BALF). Infection of mice with MERS-CoV, SARS-CoV, and SARS-CoV-2 also increased lung TF expression. Single-cell RNA sequencing analysis on the BALF from severe COVID-19 patients revealed increased TF mRNA expression in epithelial cells. TF expression was observed in peripheral blood mononuclear cells infected with SARS-CoV. TF was also expressed by peripheral blood mononuclear cells, monocytes in platelet-monocyte aggregates, and neutrophils isolated from COVID-19 patients. Elevated circulating EVTF activity was observed in severe IAV and COVID-19 patients. Importantly, EVTF activity was associated with mortality in severe IAV patients and with plasma D-dimer, severity, thrombosis, and mortality in COVID-19 patients. These studies strongly suggest that increased TF expression in patients infected with IAV and pathogenic CoVs contributes to thrombosis.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Virus de la Influenza A , Trombosis , Animales , Humanos , Leucocitos Mononucleares , Ratones , SARS-CoV-2 , Tromboplastina
16.
Sci Rep ; 11(1): 14264, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34253819

RESUMEN

Protease-activated receptor 1 (PAR1) is widely expressed in humans and mice, and is activated by a variety of proteases, including thrombin. Recently, we showed that PAR1 contributes to the innate immune response to viral infection. Mice with a global deficiency of PAR1 expressed lower levels of CXCL10 and had increased Coxsackievirus B3 (CVB3)-induced myocarditis compared with control mice. In this study, we determined the effect of cell type-specific deletion of PAR1 in cardiac myocytes (CMs) and cardiac fibroblasts (CFs) on CVB3-induced myocarditis. Mice lacking PAR1 in either CMs or CFs exhibited increased CVB3 genomes, inflammatory infiltrates, macrophages and inflammatory mediators in the heart and increased CVB3-induced myocarditis compared with wild-type controls. Interestingly, PAR1 enhanced poly I:C induction of CXCL10 in rat CFs but not in rat neonatal CMs. Importantly, activation of PAR1 reduced CVB3 replication in murine embryonic fibroblasts and murine embryonic cardiac myocytes. In addition, we showed that PAR1 reduced autophagy in murine embryonic fibroblasts and rat H9c2 cells, which may explain how PAR1 reduces CVB3 replication. These data suggest that PAR1 on CFs protects against CVB3-induced myocarditis by enhancing the anti-viral response whereas PAR1 on both CMs and fibroblasts inhibits viral replication.


Asunto(s)
Quimiocina CXCL10/metabolismo , Infecciones por Coxsackievirus/virología , Enterovirus Humano B/metabolismo , Fibroblastos/metabolismo , Miocarditis/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Proteinasa-Activados/metabolismo , Animales , Autofagia , Línea Celular , Eliminación de Gen , Humanos , Inmunidad Innata , Inflamación , Mediadores de Inflamación , Macrófagos/inmunología , Masculino , Ratones , Miocardio/inmunología , Ratas , Trombina/metabolismo , Replicación Viral
17.
Blood Adv ; 5(13): 2760-2774, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34242391

RESUMEN

Activation of blood coagulation and endothelial inflammation are hallmarks of respiratory infections with RNA viruses that contribute significantly to the morbidity and mortality of patients with severe disease. We investigated how signaling by coagulation proteases affects the quality and extent of the response to the TLR3-ligand poly(I:C) in human endothelial cells. Genome-wide RNA profiling documented additive and synergistic effects of thrombin and poly(I:C) on the expression level of many genes. The most significantly active genes exhibiting synergistic induction by costimulation with thrombin and poly(I:C) included the key mediators of 2 critical biological mechanisms known to promote endothelial thromboinflammatory functions: the initiation of blood coagulation by tissue factor and the control of leukocyte trafficking by the endothelial-leukocyte adhesion receptors E-selectin (gene symbol, SELE) and VCAM1, and the cytokines and chemokines CXCL8, IL-6, CXCL2, and CCL20. Mechanistic studies have indicated that synergistic costimulation with thrombin and poly(I:C) requires proteolytic activation of protease-activated receptor 1 (PAR1) by thrombin and transactivation of PAR2 by the PAR1-tethered ligand. Accordingly, a small-molecule PAR2 inhibitor suppressed poly(I:C)/thrombin-induced leukocyte-endothelial adhesion, cytokine production, and endothelial tissue factor expression. In summary, this study describes a positive feedback mechanism by which thrombin sustains and amplifies the prothrombotic and proinflammatory function of endothelial cells exposed to the viral RNA analogue, poly(I:C) via activation of PAR1/2.


Asunto(s)
Receptor PAR-1 , Trombina , Células Endoteliales , Retroalimentación , Humanos , ARN Viral
18.
Platelets ; 32(3): 325-330, 2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33615982

RESUMEN

Platelets play an essential role in maintaining vascular integrity after injury. In addition, platelets contribute to the immune response to pathogens. For instance, they express receptors that mediate binding of viruses, and toll-like receptors that activate the cell in response to pathogen-associated molecular patterns. Platelets can be beneficial and/or detrimental during viral infections. They reduce blood-borne viruses by engulfing the free virus and presenting the virus to neutrophils. However, platelets can also enhance inflammation and tissue injury during viral infections. Here, we discuss the roles of platelets in viral infection.


Asunto(s)
Plaquetas/inmunología , COVID-19/inmunología , Interacciones Huésped-Patógeno/inmunología , Neutrófilos/inmunología , Receptores Virales/inmunología , Proteínas Virales/inmunología , Virus/inmunología , Animales , Plaquetas/patología , Plaquetas/virología , COVID-19/genética , COVID-19/patología , COVID-19/virología , Comunicación Celular/genética , Comunicación Celular/inmunología , Células Dendríticas/inmunología , Células Dendríticas/patología , Células Dendríticas/virología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Inmunidad Innata , Linfocitos/inmunología , Linfocitos/patología , Linfocitos/virología , Neutrófilos/patología , Neutrófilos/virología , Activación Plaquetaria/inmunología , Unión Proteica , Receptores Virales/genética , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Proteínas Virales/genética , Virus/patogenicidad
19.
J Thromb Haemost ; 19(4): 1103-1111, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33346953

RESUMEN

BACKGROUND: Protease-activated receptor 1 (PAR1) is expressed in various immune cells and in the lung. We showed that PAR1 plays a role in Coxsackievirus B3 infection by enhancing toll-like receptor 3-dependent interferon- ß expression in cardiac fibroblasts. OBJECTIVES: We investigated the role of PAR1 in a mouse model of influenza A virus (IAV) infection. METHODS: We used mice with either a global deficiency of PAR1, cell type-specific deficiencies of PAR1, or mutation of PAR1 at the R41 or R46 cleavage sites. RESULTS: PAR1-deficient mice had increased CXCL1 expression in the lung, increased neutrophil recruitment, increased protein levels in the bronchoalveolar lavage fluid, and increased mortality after IAV infection compared with control mice infected with IAV. Results from mice with cell type-specific deletion of PAR1 indicated that PAR1 expression by hematopoietic cells suppressed CXCL1 expression, whereas PAR1 expression by endothelial cells enhanced CXCL1 expression in response to IAV infection. PAR1 activation also enhanced polyinosinic:polycytodylic acid induction of interleukin-8 in a human endothelial cell line. Mutation of the R46 cleavage site of PAR1 was associated with increased CXCL1 expression in the lung in response to IAV infection, which suggested that R46 signaling suppresses CXCL1 expression. CONCLUSIONS: These results indicate that PAR1 expression by different cell types and activation by different proteases modulates the immune response during IAV infection.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Células Endoteliales , Pulmón , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila , Receptor PAR-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA