Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 311(Pt 1): 136899, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36265702

RESUMEN

The purpose of this study was to find the most cadmium (Cd2+) tolerant and remediated bacteria isolate from KNO3 processing unit contaminated soil. One isolate out of 19 isolates possessed excellent Cd2+ tolerance than others, which was recognized as Enterobacter hormaechei SFC3 through molecular characterization (16S rRNA sequencing). The identified E. hormaechei SFC3 contained 55% and 45% of GC and AT content, respectively. The wild and acridine orange mutated E. hormaechei SFC3 exhibited excellent resistance to Cd2+ up to the concentration of 1500 µg mL-1. Furthermore, the wild E. hormaechei SFC3 and mutated E. hormaechei SFC3 showed 82.47% and 90.21% of Cd2+ remediation on 6th days of treatment respectively. Similarly, the Cd2+ tolerant wild and mutated E. hormaechei SFC3 showed considerable resistance to all the tested antibiotics. The findings indicate that E. hormaechei SFC3 isolated from KNO3 processing unit contaminated soil is a promising candidate for microbial remediation of Cd2+ contamination.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/toxicidad , Suelo , ARN Ribosómico 16S , Enterobacter/genética , Contaminantes del Suelo/toxicidad
2.
Environ Res ; 216(Pt 2): 114574, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36270535

RESUMEN

This study aimed to assess the phyto-synthesizing potential of Tarenna asiatica methanol leaf extract as well as its larvicidal and pupicidal potential against Aedes aegypti larvae. According to the findings of this study, the methanol leaf extract of T. asiatica has the potential to synthesize zinc oxide nanoparticles from zinc acetate dehydrate. Standard analytical techniques such as UV-visible spectrophotometer, Fourier-transform infrared spectroscopy, X-ray Diffraction analysis, Scanning Electron Microscope, and Energy Dispersive X-Ray were used to characterize the phyto-synthesized nanoparticles. The zinc oxide nanoparticles synthesized ranged in size from 22.35 to 31.27 nm and was spherical in shape. These nanoparticles demonstrated excellent larvicidal activity against Aedes aegypti larvae in the second, third, and fourth in stars, as well as significant pupicidal activity. These findings suggest that the methanol leaf extract of T. asiatica synthesized zinc oxide nanoparticles, which could be used to develop mosquito repellents.


Asunto(s)
Aedes , Dengue , Insecticidas , Nanopartículas del Metal , Óxido de Zinc , Animales , Plata/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Metanol , Insecticidas/química , Extractos Vegetales/farmacología , Mosquitos Vectores , Larva , Dengue/prevención & control , Hojas de la Planta
3.
Chemosphere ; 311(Pt 1): 136889, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36257390

RESUMEN

The current study investigated the plant growth promoting (PGP) characteristics of multi-metal-tolerant Bacillus cereus and their positive effect on the physiology, biomolecule substance, and phytoremediation ability of Chrysopogon zizanioides in metal-contaminated soil. The test soil sample was detrimentally contaminated by metals including Cd (31 mg kg-1), Zn (7696 mg kg-1), Pb (326 mg kg-1), Mn (2519 mg kg-1) and Cr (302 mg kg-1) that exceeded Indian standards. The multi-metal-tolerant B. cereus seemed to have superb PGP activities including fabrication of hydrogen cyanide, siderophore, Indole Acetic Acid, N2 fixation, as well as P solubilisation. Such multi-metal-tolerant B. cereus attributes can dramatically reduce or decontaminate metals in contaminated soils, and their PGP attributes significantly improve plant growth in contaminated soils. Hence, without (study I) and with (study II) the blending of B. cereus, this strain vastly enhances the growth and phytoremediation potency of C. zizanioides on metal contaminated soil. The results revealed that the physiological data, biomolecule components, and phytoremediation efficiency of C. zizanioides (Cr: 7.74, Cd: 12.15, Zn: 16.72, Pb: 11.47, and Mn: 14.52 mg g-1) seem to have been greatly effective in study II due to the metal solubilizing and PGP characteristics of B. cereus. This is a one-of-a-kind report on the effect of B. cereus's multi-metal tolerance and PGP characteristics on the development and phytoextraction effectiveness of C. zizanioides in metal-polluted soil.


Asunto(s)
Bacillus , Chrysopogon , Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Cadmio , Plomo , Metales Pesados/toxicidad , Metales Pesados/análisis
4.
Environ Res ; 216(Pt 2): 114594, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36257451

RESUMEN

The ability of cobalt nanoparticles (CoNPs) to absorb electromagnetic waves led to their use as potential biomedical agents in recent years. The properties of magnetic fluid containing cobalt nanoparticles are extraordinary. Hence, this research was designed to evaluate the Co(NO3)2 reducing the potential of orange peel aqueous extract and assessed their antimicrobial and antioxidant activities. The aqueous extract derived from orange peel had the potential to fabricate the CoNPs from 1 M Co(NO3)2 and the synthesized CoNPs were successfully characterized by standard nanoparticles characterization techniques such as UV-vis spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Dynamic light scattering (DLS) analyses. The FTIR analysis revealed that the synthesized CoNPs were capped with active functional groups. It was characterized by predominant peaks corresponding to carbonyl (CO), amide (CO = ), and C-O of alcohols or phenols. The size and shape of CoNPs were found as 14.2-22.7 nm and octahedral, respectively, under SEM analysis. Furthermore, at increased concentration, the CoNPs demonstrated remarkable antimicrobial activity against common bacterial (Escherichia coli, Staphylococcus aureus,Bacillus subtilis, and Klebsiella pneumoniae) and fungal (Aspergillus niger) pathogens. Furthermore, these CoNPs also showed considerable in-vitro antioxidant activities against various free articles such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Hydrogen Peroxide (H2O2). These results suggest that OP aqueous extract synthesized CoNPs possess considerable biomedical applications.


Asunto(s)
Antiinfecciosos , Citrus sinensis , Nanopartículas del Metal , Antioxidantes/farmacología , Plata/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Cobalto , Peróxido de Hidrógeno , Extractos Vegetales/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli
5.
Environ Res ; 216(Pt 3): 114714, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334834

RESUMEN

The nanoparticles based drug delivery and treatment related research has been increased significantly in the recent years. Hence, the antibacterial, antifungal, and antioxidant activity potential of pre synthesized and characterized Titanium dioxide nanoparticles (TiO2 NPs) were investigated in this study through respective standard protocols. Interestingly, the obtained results revealed that TiO2 NPs have concentration dependent antibacterial activity against bacterial pathogens such as E. coli, P.mirabilis, V. cholerae, P. aeruginosa, S. typhimurium, and S. aureus at 100 µg mL-1 concentration. Furthermore, these TiO2 NPs showed remarkable antifungal activity against aspergillosis causing fungal pathogens such as A. niger, A. fumigatus, A. nidulans, and A. flavus at 100 µg mL-1 concentration. α-glucosidase. This TiO2 NPs also effectively inhibit the α-amylase (17%) and α-Glucosidase (37%) enzyme activity at 100 µg mL-1 dosage. The DPPH assay revealed that TiO2 NPs effectively scavenge DPPH free radicals by up to 89% at 100 µg mL-1 concentration, which was comparable to butylated hydroxytoluene (96%). These results suggest that the plant-based TiO2 NPs have remarkable in-vitro antibacterial, antifungal, and antioxidant activity. These may be considered for additional in-vitro and in-vivo experiments to assess their potential biomedical applications.


Asunto(s)
Coleus , Nanopartículas del Metal , Nanopartículas , Antifúngicos/farmacología , Antifúngicos/química , Antioxidantes/farmacología , Staphylococcus aureus , Escherichia coli , Hipoglucemiantes , alfa-Glucosidasas , Titanio/química , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Pseudomonas aeruginosa , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química
6.
Environ Res ; 216(Pt 1): 114455, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202242

RESUMEN

The biosynthesis of AgNPs using a methanolic extract of Naringi crenulata is described in this study. UV-visible spectroscopy, X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), particle size analyzer (PSA), scanning electron microscope (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) were used to characterize the synthesized AgNPs. The UV-visible spectrum revealed a sharp peak at 420 nm, which represents silver's strong Plasmon resonance. FTIR and XRD confirmed the functional groups (N-H stretch, alkanes, O-H stretch, carboxylic acid, N-H bend, C-X fluoride, and C-N stretch) and face-centered cubic crystalline structure of synthesized AgNPs. SEM and TEM analyses revealed that the synthesized nanoparticles had a spherical morphology with an average diameter of 32.75 nm. The synthesized AgNPs have antibacterial activity against multidrug-resistant bacteria pathogens such as Vibrio cholerae, Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, and Klebsiella pneumoniae. AgNPs can be synthesized using a methanolic extract of Naringi crenulate, and the resulting particle may have wide range of biological applications.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier , Escherichia coli , Difracción de Rayos X
7.
Chemosphere ; 304: 135250, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35675871

RESUMEN

This research was performed to evaluate the possibilities of reducing the physicochemical properties of polluted pond water situated around the magnesite mine tailing through indigenous metal tolerant fungi. The physicochemical analysis results revealed that most of the physicochemical properties of pond water sample were crossing the permissible limits. From the muddy pond soil sample, Aspergillus flavus DDN was identified (through molecular characterization) as predominant metal tolerant fungal strain and it showed resistance to Cr(VI), Pb(II), Zn(II), Cd(II), and Mg(IV) up to 1000 µg mL-1 concentrations. This strain also effectively reduced (through biosorption) these metals in a short duration of the bioremediation process. In a lab-scale bioremediation study, the A. flavus DDN significantly reduced most of the physicochemical parameters crossing the permissible limit in polluted pond water in the presence of FM1 minimal media in 10 days of incubation. The dissolved oxygen level was significantly increased up to 74.91% from 5.86 ± 0.39 to 10.25 ± 0.95 in 10 days of treatment. The metal reduction and other physicochemical properties reduction were directly related to the biomass of A. flavus DDN. These findings suggest that A. flavus DDN can remove pollutants from magnesite mine tailing polluted pond water because elevated fungal biomass resulted in the highest percentage of pollutant reduction from the sample.


Asunto(s)
Aspergillus flavus , Estanques , Microbiología del Agua , Biodegradación Ambiental , Humanos , Minería , Estanques/microbiología
8.
Chemosphere ; 304: 135248, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35679978

RESUMEN

This sustainable approach was performed to evaluate the bioremediation potential of cyanide resistant bacterial species on sago industry effluents and assess the possibility of using the yielded biomass as single cell protein (SCP). The predominant cyanide tolerant bacterium enumerated from muddy soil was identified as Streptomyces tritici D5 through 16S rRNA sequencing. The identified S. tritici D5 strains showed excellent resistant and degradation potential at 100 mM concentration of potassium cyanide. Furthermore, the physicochemical properties analysis of sago industry effluents results revealed that the most of the parameters were crossing the permissible limits of Pollution control board of India. The bioremediation process was performed at various temperatures at 25 °C, 35 °C, and 45 °C for a period of 30 days of continuous bioremediation process with the aid of an aerator. Surprisingly, the best organic pollutant reduction was found at 35 °C and 45 °C, with 25 °C following close behind. Remarkably, the dissolved oxygen (DO) level was gradually increased from 2.24 to 12.04 mg L-1 at 35 °C in 30 days of the remediation process. The pH and ammonia were also significantly increased during the bioremediation process in 30 days of treatment. Similarly, at 35 °C of bioremediation process the S. tritici D5 yielded maximum dried biomass (6.9 g L-1) with the total crude protein (SCP) as 4.8 g L-1 (69.56%) in 30 days of growth. These findings stated that S. tritici D5 can treat sago industry effluents and that the biomass produced may be considered SCP after some in-vitro and in-vivo analyses.


Asunto(s)
Cianuros , Streptomyces , Biodegradación Ambiental , Biomasa , Proteínas en la Dieta , ARN Ribosómico 16S , Streptomyces/genética
9.
Food Chem Toxicol ; 166: 113245, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35728723

RESUMEN

The copper nanoparticles (CuNPs) synthesizing potential of Cynodon dactylon aqueous leaf extract and their antibacterial as well as dye degradation potentials were investigated. The synthesized CuNPs was initially characterized by gradual colour change from dark brown to blue in colour and then found absorbance peak at 469 nm. Furthermore, the SEM and DLS analyses showed that biosynthesized CuNPs were spherical in shaped and size ranging from 120 to 129 nm. The FTIR spectrum confirmed the presence of flavonoids, alkaloids, terpenoids, and phenols, which involved in the reduction, capping, and stabilization of CuNPs. This green synthesized CuNPs also demonstrated remarkable antibacterial activity against the bacterial pathogens such as Escherichia coli, Bacillus subtilis and Staphylococcus aureus and Klebsiella pneumoniae. This green synthesized CuNPs exhibited considerable dye degrading potential in the following order as methyl organge > methyl red > Erichrome black T dyes in the presence of sunlight through photocatalytic degradation process. These results conclude that C. dactylon aqueous leaf extract mediated nanoparticles possess remarkable antibacterial and dye degrading potential.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Antibacterianos/metabolismo , Antiinfecciosos/farmacología , Cobre , Cynodon/metabolismo , Escherichia coli/metabolismo , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA