Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Psychiatry ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844534

RESUMEN

Understanding the shared and divergent mechanisms across antidepressant (AD) classes and probiotics is critical for improving treatment for mood disorders. Here we examine the transcriptomic effects of bupropion (NDRI), desipramine (SNRI), fluoxetine (SSRI) and a probiotic formulation (Lacidofil®) on 10 regions across the mammalian brain. These treatments massively alter gene expression (on average, 2211 differentially expressed genes (DEGs) per region-treatment combination), highlighting the biological complexity of AD and probiotic action. Intersection of DEG sets against neuropsychiatric GWAS loci, sex-specific transcriptomic portraits of major depressive disorder (MDD), and mouse models of stress and depression reveals significant similarities and differences across treatments. Interestingly, molecular responses in the infralimbic cortex, basolateral amygdala and locus coeruleus are region-specific and highly similar across treatments, whilst responses in the Raphe, medial preoptic area, cingulate cortex, prelimbic cortex and ventral dentate gyrus are predominantly treatment-specific. Mechanistically, ADs concordantly downregulate immune pathways in the amygdala and ventral dentate gyrus. In contrast, protein synthesis, metabolism and synaptic signaling pathways are axes of variability among treatments. We use spatial transcriptomics to further delineate layer-specific molecular pathways and DEGs within the prefrontal cortex. Our study reveals complex AD and probiotics action on the mammalian brain and identifies treatment-specific cellular processes and gene targets associated with mood disorders.

2.
Nat Genet ; 56(3): 431-441, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38413725

RESUMEN

Spatial omics data are clustered to define both cell types and tissue domains. We present Building Aggregates with a Neighborhood Kernel and Spatial Yardstick (BANKSY), an algorithm that unifies these two spatial clustering problems by embedding cells in a product space of their own and the local neighborhood transcriptome, representing cell state and microenvironment, respectively. BANKSY's spatial feature augmentation strategy improved performance on both tasks when tested on diverse RNA (imaging, sequencing) and protein (imaging) datasets. BANKSY revealed unexpected niche-dependent cell states in the mouse brain and outperformed competing methods on domain segmentation and cell typing benchmarks. BANKSY can also be used for quality control of spatial transcriptomics data and for spatially aware batch effect correction. Importantly, it is substantially faster and more scalable than existing methods, enabling the processing of millions of cell datasets. In summary, BANKSY provides an accurate, biologically motivated, scalable and versatile framework for analyzing spatially resolved omics data.


Asunto(s)
Algoritmos , Benchmarking , Animales , Ratones , Perfilación de la Expresión Génica , ARN , Transcriptoma , Análisis de Datos
3.
Cell Rep ; 42(7): 112774, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37450368

RESUMEN

Amyloid precursor protein (APP) internalization via clathrin-/dynamin-mediated endocytosis (CME) mediated by its YENPTY motif into endosomes containing ß-secretase is proposed to be critical for amyloid-beta (Aß) production. Here, we show that somatodendritic APP internalization in primary rodent neurons is not blocked by inhibiting dynamin or mutating the YENPTY motif, in contrast to non-neuronal cell lines. These phenomena, confirmed in induced human neurons under dynamin inhibition, occur during basal conditions and chemical long-term-depression stimulus, pointing to a clathrin-independent internalization pathway for somatodendritic APP. Mutating the YENPTY motif does not alter APP recycling, degradation, or endolysosomal colocalization. However, both dynamin inhibition and the YENPTY mutant significantly decrease secreted Aß in neurons, suggesting that internalized somatodendritic APP may not constitute a major source of Aß. Interestingly, like APP, somatodendritic low-density lipoprotein receptor (LDLR) internalization does not require its CME motif. These results highlight intriguing differences in neuronal internalization pathways and refine our understanding of Aß production and secretion.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/metabolismo , Clatrina/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuronas/metabolismo , Endocitosis/fisiología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Dinaminas
4.
Mol Psychiatry ; 27(11): 4510-4525, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36056172

RESUMEN

Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.


Asunto(s)
Ensamble y Desensamble de Cromatina , Fluoxetina , Humanos , Antidepresivos/farmacología , Encéfalo/metabolismo , Metabolismo Energético/genética , Fluoxetina/farmacología , Fluoxetina/metabolismo , Mamíferos , Multiómica , Animales
5.
Mol Neurobiol ; 59(5): 3073-3090, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35266114

RESUMEN

BACKGROUND: Alzheimer's disease amyloid-beta peptides (Aß) are generated via sequential cleavage of the amyloid precursor protein (APP) by ß-secretase (Bace1) and γ-secretase. Though the precise subcellular location(s) of Bace1-mediated APP cleavage remains unresolved, current models suggest APP internalization into Bace1-containing endosomes is a critical step. However, direct evidence for this model is lacking, and previous reports that probed the APP/Bace1 interaction (using co-expressed APP and Bace1 differentially labeled with fluorescent protein tags) did not determine if APP fluorescence originated from full-length APP (fl-APP) molecules that had internalized from the cell surface pool. METHODS: We adapted the bungarotoxin-ligand (BTX) system to label surface APP and track internalized fluorescent APP/BTX puncta in rodent primary neurons co-expressing fluorescently-tagged Bace1. Subsequently, we employed imaging and biochemical-based approaches to measure N- and C-terminal APP epitope levels in primary neurons, N2a neuroblastoma, and HeLa cell lines. RESULTS: We hypothesized that surface-labeled APP/BTX puncta would, upon internalization, colocalize with fluorescently-tagged Bace1. Unexpectedly, we observed a dramatic loss of internalized APP in co-transfected neurons and ~ 80-90% loss of surface-resident fl-APP, which we also observed in HeLa and N2a cells. Loss of surface fl-APP could be reversed by a Bace1 inhibitor, suggesting that enhanced Bace1-mediated APP cleavage was responsible for the altered processing and mis-sorting. Importantly, in a C-terminally-tagged APP construct, the majority of C-terminal fluorescence was preserved in HeLa cells despite the loss of N-terminal APP signal. This phenomenon was not only recapitulated in cultured neurons, but also showed a progressive disappearance of the APP N-terminal tag, reflecting continual cleavage of fl-APP by Bace1 away from the cell body. CONCLUSIONS: Our results strongly suggested that in APP/Bace1 co-expression approaches, there was significant early and aberrant Bace1-mediated APP cleavage that perturbed fl-APP trafficking from the secretory pathway onwards, resulting in a substantial loss of surface fl-APP, which in turn led to a marked reduction in APP internalization. In C-terminally-tagged APP constructs, a large fraction of the APP fluorescence signal therefore likely arose from fluorescently-tagged ß-C-terminal-fragment (ß-CTF) or downstream proteolytic derivatives instead of fl-APP. Thus, care is needed in interpreting results where APP is detected only with a C-terminal tag in the presence of Bace1 co-expression, and previous findings may need to be reinterpreted if it is unclear whether fl-APP is present in normal physiological levels.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Células HeLa , Humanos , Neuronas/metabolismo
6.
Cell Rep ; 29(7): 1789-1799.e6, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31722197

RESUMEN

The transport and translation of dendritic mRNAs by RNA-binding proteins (RBPs) allows for spatially restricted gene expression in neuronal processes. Although local translation in neuronal dendrites is now well documented, there is little evidence for corresponding effects on local synaptic function. Here, we report that the RBP Sam68 promotes the localization and translation of Arc mRNA preferentially in distal dendrites of rodent hippocampal CA1 pyramidal neurons. Consistent with Arc function in translation-dependent synaptic plasticity, we find that Sam68 knockout (KO) mice display impaired metabotropic glutamate-receptor-dependent long-term depression (mGluR-LTD) and impaired structural plasticity exclusively at distal Schaffer-collateral synapses. Moreover, by using quantitative proteomics, we find that the Sam68 interactome contains numerous regulators of mRNA translation and synaptic function. This work identifies an important player in Arc expression, provides a general framework for Sam68 regulation of protein synthesis, and uncovers a mechanism that enables the precise spatiotemporal expression of long-term plasticity throughout neurons.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Región CA1 Hipocampal/metabolismo , Dendritas/metabolismo , Depresión Sináptica a Largo Plazo , Biosíntesis de Proteínas , Células Piramidales/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Región CA1 Hipocampal/citología , Femenino , Ratones , Ratones Noqueados , Células Piramidales/citología , Proteínas de Unión al ARN/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-27516738

RESUMEN

The NMDA receptor (R) participates in many important physiological and pathological processes. For example, its activation is required for both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. Furthermore, it may play a role in the actions of amyloid-beta on synapses as well as in the signaling leading to cell death following stroke. Until recently, these processes were thought to be mediated by ion-flux through the receptor. Using a combination of imaging and electrophysiological approaches, ion-flux independent functions of the NMDAR were recently examined. In this review, we will discuss the role of metabotropic NMDAR function in LTD and synaptic dysfunction.

8.
Proc Natl Acad Sci U S A ; 112(47): 14711-6, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26553983

RESUMEN

The NMDA receptor (NMDAR) is known to transmit important information by conducting calcium ions. However, some recent studies suggest that activation of NMDARs can trigger synaptic plasticity in the absence of ion flow. Does ligand binding transmit information to signaling molecules that mediate synaptic plasticity? Using Förster resonance energy transfer (FRET) imaging of fluorescently tagged proteins expressed in neurons, conformational signaling is identified within the NMDAR complex that is essential for downstream actions. Ligand binding transiently reduces FRET between the NMDAR cytoplasmic domain (cd) and the associated protein phosphatase 1 (PP1), requiring NMDARcd movement, and persistently reduces FRET between the NMDARcd and calcium/calmodulin-dependent protein kinase II (CaMKII), a process requiring PP1 activity. These studies directly monitor agonist-driven conformational signaling at the NMDAR complex required for synaptic plasticity.


Asunto(s)
Plasticidad Neuronal , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Animales , Anticuerpos/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Transporte Iónico/efectos de los fármacos , Modelos Biológicos , N-Metilaspartato/farmacología , Plasticidad Neuronal/efectos de los fármacos , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/química , Transducción de Señal/efectos de los fármacos , Sinapsis
9.
Proc Natl Acad Sci U S A ; 112(47): 14705-10, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26553997

RESUMEN

The NMDA receptor (R) plays important roles in brain physiology and pathology as an ion channel. Here we examine the ion flow-independent coupling of agonist to the NMDAR cytoplasmic domain (cd). We measure FRET between fluorescently tagged cytoplasmic domains of GluN1 subunits of NMDARs expressed in neurons. Different neuronal compartments display varying levels of FRET, consistent with different NMDARcd conformations. Agonist binding drives a rapid and transient ion flow-independent reduction in FRET between GluN1 subunits within individual NMDARs. Intracellular infusion of an antibody targeting the GluN1 cytoplasmic domain blocks agonist-driven FRET changes in the absence of ion flow, supporting agonist-driven movement of the NMDARcd. These studies indicate that extracellular ligand binding to the NMDAR can transmit conformational information into the cell in the absence of ion flow.


Asunto(s)
Citoplasma/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/química , Animales , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Transporte Iónico , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Factores de Tiempo
10.
Philos Trans R Soc Lond B Biol Sci ; 369(1633): 20130145, 2014 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-24298147

RESUMEN

We have previously shown that when over-expressed in neurons, green fluorescent protein (GFP) tagged GluA1 (GluA1-GFP) delivery into synapses is dependent on plasticity. A recent study suggests that GluA1 over-expression leads to its incorporation into the synapse, in the absence of additional long-term potentiation-like manipulations. It is possible that a GFP tag was responsible for the difference. Using rectification index as a measure of synaptic delivery of GluA1, we found no difference in the synaptic delivery of GluA1-GFP versus untagged GluA1. We recently published a study showing that while D-APV blocks NMDAr-dependent long-term depression (LTD), MK-801 and 7-chloro kynurenate (7CK) fail to block LTD. We propose a metabotropic function for the NMDA receptor in LTD induction. In contrast to our observations, recent unpublished data suggest that the above antagonists are equally effective in blocking LTD. We noticed different methodology in their study. Here, we show that their methodology has complex effects on synaptic transmission. Therefore, it is not possible to conclude that 7CK is effective in blocking LTD from their type of experiment.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Vectores Genéticos , Hipocampo/citología , Ácido Quinurénico/análogos & derivados , Ácido Quinurénico/farmacología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Virus Sindbis
11.
Nucleic Acids Res ; 41(9): 4877-87, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23558744

RESUMEN

Transcription factors that belong to the same family typically have similar, but not identical, binding specificities. As such, they can be expected to compete differentially for binding to different variants of their binding sites. Pho4 is a yeast factor whose nuclear concentration is up-regulated in low phosphate, while the related factor, Cbf1, is constitutively expressed. We constructed 16 GFP-reporter genes containing all palindromic variants of the motif NNCACGTGNN, and determined their activities at a range of phosphate concentrations. Pho4 affinity did not explain expression data well except under fully induced conditions. However, reporter activity was quantitatively well explained under all conditions by a model in which Cbf1 itself has modest activating activity, and Pho4 and Cbf1 compete with one another. Chromatin immunoprecipitation and computational analyses of natural Pho4 target genes, along with the activities of the reporter constructs, indicates that genes differ in their sensitivity to intermediate induction signals in part because of differences in their affinity for Cbf1. The induction sensitivity of both natural Pho4 target genes and reporter genes was well explained only by a model that assumes a role for Cbf1 in remodeling chromatin. Our analyses highlight the importance of taking into account the activities of related transcription factors in explaining system-wide gene expression data.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Modelos Genéticos , Fosfatos/metabolismo , Transducción de Señal , Activación Transcripcional
12.
Proc Natl Acad Sci U S A ; 110(10): 4027-32, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431133

RESUMEN

NMDA receptor (NMDAR) activation controls long-term potentiation (LTP) as well as long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. A long-standing view proposes that a high level of Ca(2+) entry through NMDARs triggers LTP; lower Ca(2+) entry triggers LTD. Here we show that ligand binding to NMDARs is sufficient to induce LTD; neither ion flow through NMDARs nor Ca(2+) rise is required. However, basal levels of Ca(2+) are permissively required. Lowering, but not maintaining, basal Ca(2+) levels with Ca(2+) chelators blocks LTD and drives strong synaptic potentiation, indicating that basal Ca(2+) levels control NMDAR-dependent LTD and basal synaptic transmission. Our findings indicate that metabotropic actions of NMDARs can weaken active synapses without raising postsynaptic calcium, thereby revising and expanding the mechanisms controlling synaptic plasticity.


Asunto(s)
Depresión Sináptica a Largo Plazo/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Señalización del Calcio/fisiología , Quelantes/farmacología , Maleato de Dizocilpina/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Ácido Quinurénico/análogos & derivados , Ácido Quinurénico/farmacología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Plasticidad Neuronal/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA