Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Bioorg Med Chem ; 113: 117930, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306972

RESUMEN

Methamphetamine (METH) substance use disorder is a long-standing and ever-growing public health concern. Efforts to develop successful immunotherapies are ongoing with vaccines that generate strong antibody responses are an area of significant research interest. Herein, we describe the development of a METH Hapten conjugate vaccine comprised of either two short-length peptides as linkers and mannan as an immunogenic delivery carrier. Initially, Hapten 1 (with a monoamine linker) and Hapten 2 (with a diamine linker) were synthesised. Each step of the Hapten synthesis were characterized by LC-MS and purified by Flash Chromatography and the identity of the purified Haptens were confirmed by 1H NMR. Haptens were conjugated with mannan (a polymannose), and conjugation efficiency was confirmed by LC-MS, TLC, 1H NMR, and 2,4 DNPH tests. The immunogenic potential of the two conjugated vaccines were assessed in mice with a 3-dose regimen. Concentrations of anti-METH antibodies were measured by enzyme-linked immunosorbent assay. All the analytical techniques confirmed the identity of Hapten 1 and 2 during the synthetic phase. Similarly, all the analytical approaches confirmed the conjugation between the Haptens and mannan. Mouse immunogenicity studies confirmed that both vaccine candidates were immunogenic and the vaccine with the monoamine linker plus adjuvants induced the highest antibody response after the second booster.

2.
Eur J Med Chem ; 279: 116870, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39316842

RESUMEN

The unique physicochemical properties and fascinating bioisosterism of tetrazole scaffolds have received significant attention in medicinal chemistry. We report recent efforts using tetrazoles in drug design strategies in this context. Despite the increasing prevalence of tetrazoles in FDA-approved drugs for various conditions such as cancer, bacterial viral and fungal infections, asthma, hypertension, Alzheimer's disease, malaria, and tuberculosis, our understanding of their structure-activity relationships, multifunctional mechanisms, binding modes, and biochemical properties remains limited. We explore the potential of tetrazole bioisosteres in optimising lead molecules for innovative therapies, discussing applications, trends, advantages, limitations, and challenges. Additionally, we assess future research directions to drive further progress in this field.

7.
Maturitas ; 189: 108091, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39153379

RESUMEN

Biological ageing involves a gradual decline in physiological function and resilience, marked by molecular, cellular, and systemic changes across organ systems. Geroscience, an interdisciplinary field, studies these mechanisms and their role in age-related diseases. Genomic instability, inflammation, telomere attrition, and other indicators contribute to conditions like cardiovascular disease and neurodegeneration. Geroscience identifies geroprotectors, such as resveratrol and metformin, targeting ageing pathways to extend the healthspan. Carnosine, a naturally occurring dipeptide (b-alanine and l-histidine), has emerged as a potential geroprotector with antioxidative, anti-inflammatory, and anti-glycating properties. Carnosine's benefits extend to muscle function, exercise performance, and cognitive health, making it a promising therapeutic intervention for healthy ageing and oxidative stress-related pathologies. In this review, we summarize the evidence describing carnosine's effects in promoting healthy ageing, providing new insights into improving geroscience.

8.
Maturitas ; : 108095, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39214726
13.
Front Med (Lausanne) ; 11: 1379335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015786

RESUMEN

Background: Inflammatory bowel disease is an incurable and idiopathic disease characterized by recurrent gastrointestinal tract inflammation. Tryptophan metabolism in mammalian cells and some gut microbes comprise intricate chemical networks facilitated by catalytic enzymes that affect the downstream metabolic pathways of de novo nicotinamide adenine dinucleotide (NAD+) synthesis. It is hypothesized that a correlation exists between tryptophan de novo NAD+ synthesis and chronic intestinal inflammation. Methods: Transcriptome analysis was performed using high-throughput sequencing of mRNA extracted from the distal colon and brain tissue of Winnie mice with spontaneous chronic colitis and C57BL/6 littermates. Metabolites were assessed using ultra-fast liquid chromatography to determine differences in concentrations of tryptophan metabolites. To evaluate the relative abundance of gut microbial genera involved in tryptophan and nicotinamide metabolism, we performed 16S rRNA gene amplicon sequencing of fecal samples from C57BL/6 and Winnie mice. Results: Tryptophan and nicotinamide metabolism-associated gene expression was altered in distal colons and brains of Winnie mice with chronic intestinal inflammation. Changes in these metabolic pathways were reflected by increases in colon tryptophan metabolites and decreases in brain tryptophan metabolites in Winnie mice. Furthermore, dysbiosis of gut microbiota involved in tryptophan and nicotinamide metabolism was evident in fecal samples from Winnie mice. Our findings shed light on the physiological alterations in tryptophan metabolism, specifically, its diversion from the serotonergic pathway toward the kynurenine pathway and consequential effects on de novo NAD+ synthesis in chronic intestinal inflammation. Conclusion: The results of this study reveal differential expression of tryptophan and nicotinamide metabolism-associated genes in the distal colon and brain in Winnie mice with chronic intestinal inflammation. These data provide evidence supporting the role of tryptophan metabolism and de novo NAD+ synthesis in IBD pathophysiology.

14.
PLOS Glob Public Health ; 4(7): e0003129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39024243

RESUMEN

Osteoarthritis is a leading cause of chronic pain and is associated with high rates of depression. Physical activity reduces depression symptoms and pain levels. It remains unknown if physical activity is associated with lower symptoms of depression irrespective of pain levels in individuals with osteoarthritis. We explored whether pain mediated or moderated the relationship between levels of physical activity engagement and depression symptoms. Individuals with osteoarthritis who were waiting for an orthopaedic consultation at a public hospital in Melbourne, Australia, were recruited. Data collected on pain levels, physical activity engagement and depression symptoms. Descriptive statistics were used to summarise participant characteristics. Moderation and mediation analyses were used to establish the impact of pain on the relationship between physical activity and depression, after adjusting for demographic and joint specific characteristics. The results indicated that the inverse association between physical activity and depression depended on the level of pain, such that the association was stronger in people with greater pain. The mediation results confirm that participating in physical activity is indirectly, inversely associated with symptoms of depression through lower levels of pain. The highest levels of pain were associated with the most potential benefit in terms of reduction in symptoms of depression from engaging in physical activity. Physical activity may be particularly important to manage depression symptoms in people with greater osteoarthritis-related pain as patients with the highest pain may have the greatest benefits.

15.
Bioorg Chem ; 150: 107602, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959647

RESUMEN

The binding affinities and interactions between eight drug candidates, both commercially available (candesartan; losartan; losartan carboxylic acid; nirmatrelvir; telmisartan) and newly synthesized benzimidazole-N-biphenyltetrazole (ACC519T), benzimidazole bis-N,N'-biphenyltetrazole (ACC519T(2) and 4-butyl-N,N-bis([2-(2H-tetrazol-5-yl)biphenyl-4-yl]) methyl (BV6), and the active site of angiotensin-converting enzyme-2 (ACE2) were evaluated for their potential as inhibitors against SARS-CoV-2 and regulators of ACE2 function through Density Functional Theory methodology and enzyme activity assays, respectively. Notably, telmisartan and ACC519T(2) exhibited pronounced binding affinities, forming strong interactions with ACE2's active center, favorably accepting proton from the guanidinium group of arginine273. The ordering of candidates by binding affinity and reactivity descriptors, emerged as telmisartan > ACC519T(2) > candesartan > ACC519T > losartan carboxylic acid > BV6 > losartan > nirmatrelvir. Proton transfers among the active center amino acids revealed their interconnectedness, highlighting a chain-like proton transfer involving tyrosine, phenylalanine, and histidine. Furthermore, these candidates revealed their potential antiviral abilities by influencing proton transfer within the ACE2 active site. Furthermore, through an in vitro pharmacological assays we determined that candesartan and the BV6 derivative, 4-butyl-N,N0-bis[20-2Htetrazol-5-yl)bipheyl-4-yl]methyl)imidazolium bromide (BV6(K+)2) also contain the capacity to increase ACE2 functional activity. This comprehensive analysis collectively underscores the promise of these compounds as potential therapeutic agents against SARS-CoV-2 by targeting crucial protein interactions.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Enzima Convertidora de Angiotensina 2 , Teoría Funcional de la Densidad , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Humanos , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/química , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/química , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , COVID-19/virología , Relación Estructura-Actividad , Estructura Molecular , Bencimidazoles/farmacología , Bencimidazoles/química , Tetrazoles/farmacología , Tetrazoles/química , Tetrazoles/síntesis química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Tratamiento Farmacológico de COVID-19
17.
Artículo en Inglés | MEDLINE | ID: mdl-38837176

RESUMEN

The biological aging of stem cells (exhaustion) is proposed to contribute to the development of a variety of age-related conditions. Despite this, little is understood about the specific mechanisms which drive this process. In this study, we assess the transcriptomic and proteomic changes in 3 different populations of mesenchymal progenitor cells from older (50-70 years) and younger (20-40 years) individuals to uncover potential mechanisms driving stem cell exhaustion in mesenchymal tissues. To do this, we harvested primary bone marrow mesenchymal stem and progenitor cells (MPCs), circulating osteoprogenitors (COP), and adipose-derived stem cells (ADSCs) from younger and older donors, with an equal number of samples from men and women. These samples underwent RNA sequencing and label-free proteomic analysis, comparing the younger samples to the older ones. There was a distinct transcriptomic phenotype in the analysis of pooled older stem cells, suggestive of suppressed proliferation and differentiation; however, these changes were not reflected in the proteome of the cells. Analyzed independently, older MPCs had a distinct phenotype in both the transcriptome and proteome consistent with altered differentiation and proliferation with a proinflammatory immune shift in older adults. COP cells showed a transcriptomic shift to proinflammatory signaling but no consistent proteomic phenotype. Similarly, ADSCs displayed transcriptomic shifts in physiologies associated with cell migration, adherence, and immune activation but no proteomic change with age. These results show that there are underlying transcriptomic changes with stem cell aging that may contribute to a decline in tissue regeneration. However, the proteome of the cells was inconsistently regulated.


Asunto(s)
Envejecimiento , Células Madre Mesenquimatosas , Proteoma , Transcriptoma , Células Madre Mesenquimatosas/metabolismo , Humanos , Persona de Mediana Edad , Anciano , Femenino , Masculino , Envejecimiento/genética , Envejecimiento/fisiología , Adulto , Diferenciación Celular , Adulto Joven , Senescencia Celular/genética , Senescencia Celular/fisiología , Proteómica , Proliferación Celular/genética
19.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891966

RESUMEN

The N-terminal portion of the octapeptide angiotensin II (DRVYIHPF; AngII), a vasopressor peptide that favorably binds to, and activates, AngII type 1 receptor (AT1R), has an important role in maintaining bioactive conformation. It involves all three charged groups, namely (i) the N-terminal amino group cation, (ii) the Asp sidechain anion and (iii) the Arg guanidino cation. Neutralization of any one of these three charged groups results in a substantial reduction (<5%) in bioactivity, implicating a specialized function for this cluster. In contrast, angiotensin A (ARVYIHPF; AngA) has reduced bioactivity at AT1R; however, replacement of Asp in AngII with sarcosine (N-methyl-glycine) not only restores bioactivity but increases the activity of agonist, antagonist, and inverse agonist analogues. A bend produced at the N-terminus by the introduction of the secondary amino acid sarcosine is thought to realign the functional groups that chaperone the C-terminal portion of AngII, allowing transfer of the negative charge originating at the C-terminus to be transferred to the Tyr hydroxyl-forming tyrosinate anion, which is required to activate the receptor and desensitizes the receptor (tachyphylaxis). Peptide (sarilesin) and nonpeptide (sartans) moieties, which are long-acting inverse agonists, appear to desensitize the receptor by a mechanism analogous to tachyphylaxis. Sartans/bisartans were found to bind to alpha adrenergic receptors resulting in structure-dependent desensitization or resensitization. These considerations have provided information on the mechanisms of receptor desensitization/tolerance and insights into possible avenues for treating addiction. In this regard sartans, which appear to cross the blood-brain barrier more readily than bisartans, are the preferred drug candidates.


Asunto(s)
Angiotensina II , Barrera Hematoencefálica , Receptor de Angiotensina Tipo 1 , Barrera Hematoencefálica/metabolismo , Angiotensina II/metabolismo , Humanos , Animales , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 1/química , Conformación Proteica
20.
Food Sci Nutr ; 12(6): 3819-3833, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38873448

RESUMEN

The morbidity and mortality associated with type 2 diabetes mellitus (T2DM) have grown exponentially over the last 30 years. Together with its associated complications, the mortality rates have increased. One important complication in those living with T2DM is the acceleration of age-related cognitive decline. T2DM-induced cognitive impairment seriously affects memory, executive function, and quality of life. However, there is a lack of effective treatment for both diabetes and cognitive decline. Thus, finding novel treatments which are cheap, effective in both diabetes and cognitive impairment, are easily accessible, are needed to reduce impact on patients with diabetes and health-care systems. Carnosine, a histidine containing dipeptide, plays a protective role in cognitive diseases due to its antioxidant, anti-inflammation, and anti-glycation properties, all of which may slow the development of neurodegenerative diseases and ischemic injury. Furthermore, carnosine is also involved in regulating glucose and insulin in diabetes. Herein, we discuss the neuroprotective role of carnosine and its mechanisms in T2DM-induced cognitive impairment, which may provide a theoretical basis and evidence base to evaluate whether carnosine has therapeutic effects in alleviating cognitive dysfunction in T2DM patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA