Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 12(11): 977, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675185

RESUMEN

Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state "addicted" to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.


Asunto(s)
Ácido Graso Sintasas/metabolismo , Mitocondrias/metabolismo , Neoplasias/genética , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Transfección
2.
Cancers (Basel) ; 13(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34439169

RESUMEN

The anticancer actions of the biguanide metformin involve the functioning of the serine/glycine one-carbon metabolic network. We report that metformin directly and specifically targets the enzymatic activity of mitochondrial serine hydroxymethyltransferase (SHMT2). In vitro competitive binding assays with human recombinant SHMT1 and SHMT2 isoforms revealed that metformin preferentially inhibits SHMT2 activity by a non-catalytic mechanism. Computational docking coupled with molecular dynamics simulation predicted that metformin could occupy the cofactor pyridoxal-5'-phosphate (PLP) cavity and destabilize the formation of catalytically active SHMT2 oligomers. Differential scanning fluorimetry-based biophysical screening confirmed that metformin diminishes the capacity of PLP to promote the conversion of SHMT2 from an inactive, open state to a highly ordered, catalytically competent closed state. CRISPR/Cas9-based disruption of SHMT2, but not of SHMT1, prevented metformin from inhibiting total SHMT activity in cancer cell lines. Isotope tracing studies in SHMT1 knock-out cells confirmed that metformin decreased the SHMT2-channeled serine-to-formate flux and restricted the formate utilization in thymidylate synthesis upon overexpression of the metformin-unresponsive yeast equivalent of mitochondrial complex I (mCI). While maintaining its capacity to inhibit mitochondrial oxidative phosphorylation, metformin lost its cytotoxic and antiproliferative activity in SHMT2-null cancer cells unable to produce energy-rich NADH or FADH2 molecules from tricarboxylic acid cycle (TCA) metabolites. As currently available SHMT2 inhibitors have not yet reached the clinic, our current data establishing the structural and mechanistic bases of metformin as a small-molecule, PLP-competitive inhibitor of the SHMT2 activating oligomerization should benefit future discovery of biguanide skeleton-based novel SHMT2 inhibitors in cancer prevention and treatment.

3.
Cells ; 10(3)2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801903

RESUMEN

Double strand breaks (DSBs) are highly toxic to a cell, a property that is exploited in radiation therapy. A critical component for the damage induction is cellular oxygen, making hypoxic tumor areas refractory to the efficacy of radiation treatment. During a fractionated radiation regimen, these hypoxic areas can be re-oxygenated. Nonetheless, hypoxia still constitutes a negative prognostic factor for the patient's outcome. We hypothesized that this might be attributed to specific hypoxia-induced cellular traits that are maintained upon reoxygenation. Here, we show that reoxygenation of hypoxic non-transformed RPE-1 cells fully restored induction of DSBs but the cells remain radioresistant as a consequence of hypoxia-induced quiescence. With the use of the cell cycle indicators (FUCCI), cell cycle-specific radiation sensitivity, the cell cycle phase duration with live cell imaging, and single cell tracing were assessed. We observed that RPE-1 cells experience a longer G1 phase under hypoxia and retain a large fraction of cells that are non-cycling. Expression of HPV oncoprotein E7 prevents hypoxia-induced quiescence and abolishes the radioprotective effect. In line with this, HPV-negative cancer cell lines retain radioresistance, while HPV-positive cancer cell lines are radiosensitized upon reoxygenation. Quiescence induction in hypoxia and its HPV-driven prevention was observed in 3D multicellular spheroids. Collectively, we identify a new hypoxia-dependent radioprotective phenotype due to hypoxia-induced quiescence that accounts for a global decrease in radiosensitivity that can be retained upon reoxygenation and is absent in cells expressing oncoprotein E7.


Asunto(s)
Hipoxia de la Célula/fisiología , Radiación Ionizante , Línea Celular Tumoral , Humanos
4.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35056076

RESUMEN

COVID-19 pathophysiology is caused by a cascade of respiratory and multiorgan failures arising, at least in part, from the SARS-CoV-2-driven dysregulation of the master transcriptional factor STAT3. Pharmacological correction of STAT3 over-stimulation, which is at the root of acute respiratory distress syndrome (ARDS) and coagulopathy/thrombosis events, should be considered for treatment of severe COVID-19. In this perspective, we first review the current body of knowledge on the role of STAT3 in the pathogenesis of severe COVID-19. We then exemplify the potential clinical value of treating COVID-19 disease with STAT3 inhibitors by presenting the outcomes of two hospitalized patients with active cancer and COVID-19 receiving oral Legalon®-a nutraceutical containing the naturally occurring STAT3 inhibitor silibinin. Both patients, which were recruited to the clinical trial SIL-COVID19 (EudraCT number: 2020-001794-77) had SARS-CoV-2 bilateral interstitial pneumonia and a high COVID-GRAM score, and showed systemic proinflammatory responses in terms of lymphocytopenia and hypoalbuminemia. Both patients were predicted to be at high risk of critical COVID-19 illness in terms of intensive care unit admission, invasive ventilation, or death. In addition to physician's choice of best available therapy or supportive care, patients received 1050 mg/day Legalon® for 10 days without side-effects. Silibinin-treated cancer/COVID-19+ patients required only minimal oxygen support (2-4 L/min) during the episode, exhibited a sharp decline of the STAT3-regulated C-reactive protein, and demonstrated complete resolution of the pulmonary lesions. These findings might inspire future research to advance our knowledge and improve silibinin-based clinical interventions aimed to target STAT3-driven COVID-19 pathophysiology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA