Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS One ; 18(4): e0269324, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37011054

RESUMEN

INTRODUCTION: We are conducting a multicenter study to identify classifiers predictive of disease-specific survival in patients with primary melanomas. Here we delineate the unique aspects, challenges, and best practices for optimizing a study of generally small-sized pigmented tumor samples including primary melanomas of at least 1.05mm from AJTCC TNM stage IIA-IIID patients. We also evaluated tissue-derived predictors of extracted nucleic acids' quality and success in downstream testing. This ongoing study will target 1,000 melanomas within the international InterMEL consortium. METHODS: Following a pre-established protocol, participating centers ship formalin-fixed paraffin embedded (FFPE) tissue sections to Memorial Sloan Kettering Cancer Center for the centralized handling, dermatopathology review and histology-guided coextraction of RNA and DNA. Samples are distributed for evaluation of somatic mutations using next gen sequencing (NGS) with the MSK-IMPACTTM assay, methylation-profiling (Infinium MethylationEPIC arrays), and miRNA expression (Nanostring nCounter Human v3 miRNA Expression Assay). RESULTS: Sufficient material was obtained for screening of miRNA expression in 683/685 (99%) eligible melanomas, methylation in 467 (68%), and somatic mutations in 560 (82%). In 446/685 (65%) cases, aliquots of RNA/DNA were sufficient for testing with all three platforms. Among samples evaluated by the time of this analysis, the mean NGS coverage was 249x, 59 (18.6%) samples had coverage below 100x, and 41/414 (10%) failed methylation QC due to low intensity probes or insufficient Meta-Mixed Interquartile (BMIQ)- and single sample (ss)- Noob normalizations. Six of 683 RNAs (1%) failed Nanostring QC due to the low proportion of probes above the minimum threshold. Age of the FFPE tissue blocks (p<0.001) and time elapsed from sectioning to co-extraction (p = 0.002) were associated with methylation screening failures. Melanin reduced the ability to amplify fragments of 200bp or greater (absent/lightly pigmented vs heavily pigmented, p<0.003). Conversely, heavily pigmented tumors rendered greater amounts of RNA (p<0.001), and of RNA above 200 nucleotides (p<0.001). CONCLUSION: Our experience with many archival tissues demonstrates that with careful management of tissue processing and quality control it is possible to conduct multi-omic studies in a complex multi-institutional setting for investigations involving minute quantities of FFPE tumors, as in studies of early-stage melanoma. The study describes, for the first time, the optimal strategy for obtaining archival and limited tumor tissue, the characteristics of the nucleic acids co-extracted from a unique cell lysate, and success rate in downstream applications. In addition, our findings provide an estimate of the anticipated attrition that will guide other large multicenter research and consortia.


Asunto(s)
Melanoma , MicroARNs , Ácidos Nucleicos , Humanos , Fijación del Tejido/métodos , MicroARNs/análisis , Melanoma/genética , ADN/genética , Adhesión en Parafina/métodos , Formaldehído
2.
Front Oncol ; 12: 852952, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480113

RESUMEN

Melanoma is a highly prevalent cancer with an increasing incidence worldwide and high metastatic potential. Brain metastasis is a major complication of the disease, as more than 50% of metastatic melanoma patients eventually develop intracranial disease. MicroRNAs (miRNAs) have been found to play an important role in the tumorigenicity of different cancers and have potential as markers of disease outcome. Identification of relevant miRNAs has generally stemmed from miRNA profiling studies of cells or tissues, but these approaches may have missed miRNAs with relevant functions that are expressed in subfractions of cancer cells. We performed an unbiased in vivo screen to identify miRNAs with potential functions as metastasis suppressors using a lentiviral library of miRNA decoys. Notably, we found that a significant fraction of melanomas that metastasized to the brain carried a decoy for miR-124a, a miRNA that is highly expressed in the brain/neurons. Additional loss- and gain-of-function in vivo validation studies confirmed miR-124a as a suppressor of melanoma metastasis and particularly of brain metastasis. miR-124a overexpression did not inhibit tumor growth in vivo, underscoring that miR-124a specifically controls processes required for melanoma metastatic growth, such as seeding and growth post-extravasation. Finally, we provide proof of principle of this miRNA as a promising therapeutic agent by showing its ability to impair metastatic growth of melanoma cells seeded in distal organs. Our efforts shed light on miR-124a as an antimetastatic agent, which could be leveraged therapeutically to impair metastatic growth and improve patient survival.

3.
Cancer Discov ; 12(5): 1314-1335, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35262173

RESUMEN

Brain metastasis is a significant cause of morbidity and mortality in multiple cancer types and represents an unmet clinical need. The mechanisms that mediate metastatic cancer growth in the brain parenchyma are largely unknown. Melanoma, which has the highest rate of brain metastasis among common cancer types, is an ideal model to study how cancer cells adapt to the brain parenchyma. Our unbiased proteomics analysis of melanoma short-term cultures revealed that proteins implicated in neurodegenerative pathologies are differentially expressed in melanoma cells explanted from brain metastases compared with those derived from extracranial metastases. We showed that melanoma cells require amyloid beta (Aß) for growth and survival in the brain parenchyma. Melanoma-secreted Aß activates surrounding astrocytes to a prometastatic, anti-inflammatory phenotype and prevents phagocytosis of melanoma by microglia. Finally, we demonstrate that pharmacologic inhibition of Aß decreases brain metastatic burden. SIGNIFICANCE: Our results reveal a novel mechanistic connection between brain metastasis and Alzheimer's disease, two previously unrelated pathologies; establish Aß as a promising therapeutic target for brain metastasis; and demonstrate suppression of neuroinflammation as a critical feature of metastatic adaptation to the brain parenchyma. This article is highlighted in the In This Issue feature, p. 1171.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Péptidos beta-Amiloides/uso terapéutico , Astrocitos/metabolismo , Neoplasias Encefálicas/genética , Humanos , Melanoma/tratamiento farmacológico , Metástasis de la Neoplasia , Enfermedades Neuroinflamatorias
4.
Sci Adv ; 8(7): eabi7127, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179962

RESUMEN

The contribution of epigenetic dysregulation to metastasis remains understudied. Through a meta-analysis of gene expression datasets followed by a mini-screen, we identified Plant Homeodomain Finger protein 8 (PHF8), a histone demethylase of the Jumonji C protein family, as a previously unidentified prometastatic gene in melanoma. Loss- and gain-of-function approaches demonstrate that PHF8 promotes cell invasion without affecting proliferation in vitro and increases dissemination but not subcutaneous tumor growth in vivo, thus supporting its specific contribution to the acquisition of metastatic potential. PHF8 requires its histone demethylase activity to enhance melanoma cell invasion. Transcriptomic and epigenomic analyses revealed that PHF8 orchestrates a molecular program that directly controls the TGFß signaling pathway and, as a consequence, melanoma invasion and metastasis. Our findings bring a mechanistic understanding of epigenetic regulation of metastatic fitness in cancer, which may pave the way for improved therapeutic interventions.


Asunto(s)
Histona Demetilasas , Melanoma , Proliferación Celular , Epigénesis Genética , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Melanoma/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
5.
Nucleic Acids Res ; 48(7): 3789-3805, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-31980816

RESUMEN

By interacting with proteins and nucleic acids, the vast family of mammalian circRNAs is proposed to influence many biological processes. Here, RNA sequencing analysis of circRNAs differentially expressed during myogenesis revealed that circSamd4 expression increased robustly in mouse C2C12 myoblasts differentiating into myotubes. Moreover, silencing circSamd4, which is conserved between human and mouse, delayed myogenesis and lowered the expression of myogenic markers in cultured myoblasts from both species. Affinity pulldown followed by mass spectrometry revealed that circSamd4 associated with PURA and PURB, two repressors of myogenesis that inhibit transcription of the myosin heavy chain (MHC) protein family. Supporting the hypothesis that circSamd4 might complex with PUR proteins and thereby prevent their interaction with DNA, silencing circSamd4 enhanced the association of PUR proteins with the Mhc promoter, while overexpressing circSamd4 interfered with the binding of PUR proteins to the Mhc promoter. These effects were abrogated when using a mutant circSamd4 lacking the PUR binding site. Our results indicate that the association of PUR proteins with circSamd4 enhances myogenesis by contributing to the derepression of MHC transcription.


Asunto(s)
Regulación de la Expresión Génica , Desarrollo de Músculos/genética , ARN Circular/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Animales , Sitios de Unión , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Mioblastos/citología , Mioblastos/metabolismo , Cadenas Pesadas de Miosina/biosíntesis , Cadenas Pesadas de Miosina/genética , Proteínas del Tejido Nervioso/metabolismo , ARN Circular/química , Factores de Transcripción/metabolismo
6.
Cancer Cell ; 37(1): 55-70.e15, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31935372

RESUMEN

Metastasis is the primary cause of death of cancer patients. Dissecting mechanisms governing metastatic spread may uncover important tumor biology and/or yield promising therapeutic insights. Here, we investigated the role of circular RNAs (circRNA) in metastasis, using melanoma as a model aggressive tumor. We identified silencing of cerebellar degeneration-related 1 antisense (CDR1as), a regulator of miR-7, as a hallmark of melanoma progression. CDR1as depletion results from epigenetic silencing of LINC00632, its originating long non-coding RNA (lncRNA) and promotes invasion in vitro and metastasis in vivo through a miR-7-independent, IGF2BP3-mediated mechanism. Moreover, CDR1as levels reflect cellular states associated with distinct therapeutic responses. Our study reveals functional, prognostic, and predictive roles for CDR1as and expose circRNAs as key players in metastasis.


Asunto(s)
Autoantígenos/genética , Epigénesis Genética , Silenciador del Gen , Melanoma/patología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Humanos , MicroARNs/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Pronóstico , ARN sin Sentido/genética , ARN Circular/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética
7.
Cancer Cell ; 31(6): 804-819.e7, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28609658

RESUMEN

Association of aberrant glycosylation with melanoma progression is based mainly on analyses of cell lines. Here we present a systems-based study of glycomic changes and corresponding enzymes associated with melanoma metastasis in patient samples. Upregulation of core fucosylation (FUT8) and downregulation of α-1,2 fucosylation (FUT1, FUT2) were identified as features of metastatic melanoma. Using both in vitro and in vivo studies, we demonstrate FUT8 is a driver of melanoma metastasis which, when silenced, suppresses invasion and tumor dissemination. Glycoprotein targets of FUT8 were enriched in cell migration proteins including the adhesion molecule L1CAM. Core fucosylation impacted L1CAM cleavage and the ability of L1CAM to support melanoma invasion. FUT8 and its targets represent therapeutic targets in melanoma metastasis.


Asunto(s)
Fucosiltransferasas/genética , Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Animales , Fucosiltransferasas/metabolismo , Fucosiltransferasas/fisiología , Silenciador del Gen , Glicoproteínas/metabolismo , Glicosilación , Humanos , Melanoma/patología , Ratones , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética , Biología de Sistemas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA