Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Transl Med ; 14(648): eabj2658, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35675433

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic risk factors for Parkinson's disease (PD). Increased LRRK2 kinase activity is thought to impair lysosomal function and may contribute to the pathogenesis of PD. Thus, inhibition of LRRK2 is a potential disease-modifying therapeutic strategy for PD. DNL201 is an investigational, first-in-class, CNS-penetrant, selective, ATP-competitive, small-molecule LRRK2 kinase inhibitor. In preclinical models, DNL201 inhibited LRRK2 kinase activity as evidenced by reduced phosphorylation of both LRRK2 at serine-935 (pS935) and Rab10 at threonine-73 (pT73), a direct substrate of LRRK2. Inhibition of LRRK2 by DNL201 demonstrated improved lysosomal function in cellular models of disease, including primary mouse astrocytes and fibroblasts from patients with Gaucher disease. Chronic administration of DNL201 to cynomolgus macaques at pharmacologically relevant doses was not associated with adverse findings. In phase 1 and phase 1b clinical trials in 122 healthy volunteers and in 28 patients with PD, respectively, DNL201 at single and multiple doses inhibited LRRK2 and was well tolerated at doses demonstrating LRRK2 pathway engagement and alteration of downstream lysosomal biomarkers. Robust cerebrospinal fluid penetration of DNL201 was observed in both healthy volunteers and patients with PD. These data support the hypothesis that LRRK2 inhibition has the potential to correct lysosomal dysfunction in patients with PD at doses that are generally safe and well tolerated, warranting further clinical development of LRRK2 inhibitors as a therapeutic modality for PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Animales , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Lisosomas/metabolismo , Ratones , Mutación , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Fosforilación
2.
J Exp Med ; 219(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35226042

RESUMEN

Delivery of biotherapeutics across the blood-brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR-binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Receptores de Transferrina , Proteínas Recombinantes de Fusión , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Iduronato Sulfatasa/metabolismo , Iduronato Sulfatasa/farmacología , Lisosomas/metabolismo , Ratones , Mucopolisacaridosis II/metabolismo , Receptores de Transferrina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Distribución Tisular
3.
JCI Insight ; 6(19)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34622797

RESUMEN

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by deficiency of the iduronate-2-sulfatase (IDS) enzyme, resulting in cellular accumulation of glycosaminoglycans (GAGs) throughout the body. Treatment of MPS II remains a considerable challenge as current enzyme replacement therapies do not adequately control many aspects of the disease, including skeletal and neurological manifestations. We developed an IDS transport vehicle (ETV:IDS) that is engineered to bind to the transferrin receptor; this design facilitates receptor-mediated transcytosis of IDS across the blood-brain barrier and improves its distribution into the brain while maintaining distribution to peripheral tissues. Here we show that chronic systemic administration of ETV:IDS in a mouse model of MPS II reduced levels of peripheral and central nervous system GAGs, microgliosis, and neurofilament light chain, a biomarker of neuronal injury. Additionally, ETV:IDS rescued auricular and skeletal abnormalities when introduced in adult MPS II mice. These effects were accompanied by improvements in several neurobehavioral domains, including motor skills, sensorimotor gating, and learning and memory. Together, these results highlight the therapeutic potential of ETV:IDS for treating peripheral and central abnormalities in MPS II. DNL310, an investigational ETV:IDS molecule, is currently in clinical trials as a potential treatment for patients with MPS II.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Terapia de Reemplazo Enzimático/métodos , Iduronato Sulfatasa/administración & dosificación , Mucopolisacaridosis II/tratamiento farmacológico , Receptores de Transferrina/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Glicosaminoglicanos/metabolismo , Iduronato Sulfatasa/genética , Memoria/efectos de los fármacos , Ratones , Ratones Noqueados , Destreza Motora/efectos de los fármacos , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/metabolismo , Mucopolisacaridosis II/fisiopatología , Fenotipo , Filtrado Sensorial/efectos de los fármacos , Esqueleto/efectos de los fármacos , Aprendizaje Espacial/efectos de los fármacos , Transcitosis
4.
Sci Rep ; 11(1): 12900, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145320

RESUMEN

Variants in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with increased risk for familial and sporadic Parkinson's disease (PD). Pathogenic variants in LRRK2, including the common variant G2019S, result in increased LRRK2 kinase activity, supporting the therapeutic potential of LRRK2 kinase inhibitors for PD. To better understand the role of LRRK2 in disease and to support the clinical development of LRRK2 inhibitors, quantitative and high-throughput assays to measure LRRK2 levels and activity are needed. We developed and applied such assays to measure the levels of LRRK2 as well as the phosphorylation of LRRK2 itself or one of its substrates, Rab10 (pT73 Rab10). We observed increased LRRK2 activity in various cellular models of disease, including iPSC-derived microglia, as well as in human subjects carrying the disease-linked variant LRRK2 G2019S. Capitalizing on the high-throughput and sensitive nature of these assays, we detected a significant reduction in LRRK2 activity in subjects carrying missense variants in LRRK2 associated with reduced disease risk. Finally, we optimized these assays to enable analysis of LRRK2 activity following inhibition in human peripheral blood mononuclear cells (PBMCs) and whole blood, demonstrating their potential utility as biomarkers to assess changes in LRRK2 expression and activity in the clinic.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Biomarcadores , Activación Enzimática , Pruebas de Enzimas/métodos , Pruebas de Enzimas/normas , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Leucocitos Mononucleares/metabolismo , Ratones , Neuroglía/metabolismo , Proteínas de Unión al GTP rab/genética
5.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751752

RESUMEN

We recently developed a blood-brain barrier (BBB)-penetrating enzyme transport vehicle (ETV) fused to the lysosomal enzyme iduronate 2-sulfatase (ETV:IDS) and demonstrated its ability to reduce glycosaminoglycan (GAG) accumulation in the brains of a mouse model of mucopolysaccharidosis (MPS) II. To accurately quantify GAGs, we developed a plate-based high-throughput enzymatic digestion assay coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously measure heparan sulfate and dermatan sulfate derived disaccharides in tissue, cerebrospinal fluid (CSF) and individual cell populations isolated from mouse brain. The method offers ultra-high sensitivity enabling quantitation of specific GAG species in as low as 100,000 isolated neurons and a low volume of CSF. With an LOD at 3 ng/mL and LLOQs at 5-10 ng/mL, this method is at least five times more sensitive than previously reported approaches. Our analysis demonstrated that the accumulation of CSF and brain GAGs are in good correlation, supporting the potential use of CSF GAGs as a surrogate biomarker for brain GAGs. The bioanalytical method was qualified through the generation of standard curves in matrix for preclinical studies of CSF, demonstrating the feasibility of this assay for evaluating therapeutic effects of ETV:IDS in future studies and applications in a wide variety of MPS disorders.


Asunto(s)
Biomarcadores/metabolismo , Glicosaminoglicanos/aislamiento & purificación , Iduronato Sulfatasa/genética , Mucopolisacaridosis II/diagnóstico , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Cromatografía Liquida , Dermatán Sulfato/farmacología , Disacáridos/química , Modelos Animales de Enfermedad , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/farmacología , Humanos , Iduronato Sulfatasa/metabolismo , Ratones , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/patología , Espectrometría de Masas en Tándem
6.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707880

RESUMEN

Mucopolysaccharidosis type II is a lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS) and characterized by the accumulation of the primary storage substrate, glycosaminoglycans (GAGs). Understanding central nervous system (CNS) pathophysiology in neuronopathic MPS II (nMPS II) has been hindered by the lack of CNS biomarkers. Characterization of fluid biomarkers has been largely focused on evaluating GAGs in cerebrospinal fluid (CSF) and the periphery; however, GAG levels alone do not accurately reflect the broad cellular dysfunction in the brains of MPS II patients. We utilized a preclinical mouse model of MPS II, treated with a brain penetrant form of IDS (ETV:IDS) to establish the relationship between markers of primary storage and downstream pathway biomarkers in the brain and CSF. We extended the characterization of pathway and neurodegeneration biomarkers to nMPS II patient samples. In addition to the accumulation of CSF GAGs, nMPS II patients show elevated levels of lysosomal lipids, neurofilament light chain, and other biomarkers of neuronal damage and degeneration. Furthermore, we find that these biomarkers of downstream pathology are tightly correlated with heparan sulfate. Exploration of the responsiveness of not only CSF GAGs but also pathway and disease-relevant biomarkers during drug development will be crucial for monitoring disease progression, and the development of effective therapies for nMPS II.


Asunto(s)
Encéfalo/metabolismo , Glicosaminoglicanos/metabolismo , Iduronato Sulfatasa/metabolismo , Metabolismo de los Lípidos , Lisosomas/metabolismo , Mucopolisacaridosis II/sangre , Mucopolisacaridosis II/líquido cefalorraquídeo , Adolescente , Animales , Biomarcadores/metabolismo , Encéfalo/patología , Niño , Preescolar , Dermatán Sulfato/sangre , Dermatán Sulfato/líquido cefalorraquídeo , Dermatán Sulfato/metabolismo , Terapia de Reemplazo Enzimático , Femenino , Gangliósidos/metabolismo , Glicosaminoglicanos/líquido cefalorraquídeo , Trasplante de Células Madre Hematopoyéticas , Heparitina Sulfato/sangre , Heparitina Sulfato/líquido cefalorraquídeo , Heparitina Sulfato/metabolismo , Humanos , Iduronato Sulfatasa/genética , Iduronato Sulfatasa/farmacología , Lactante , Inflamación/metabolismo , Lisosomas/patología , Masculino , Espectrometría de Masas , Ratones , Ratones Noqueados , Mucopolisacaridosis II/metabolismo , Mucopolisacaridosis II/terapia , Proteínas de Neurofilamentos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Sci Transl Med ; 12(545)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32461331

RESUMEN

Most lysosomal storage diseases (LSDs) involve progressive central nervous system (CNS) impairment, resulting from deficiency of a lysosomal enzyme. Treatment of neuronopathic LSDs remains a considerable challenge, as approved intravenously administered enzyme therapies are ineffective in modifying CNS disease because they do not effectively cross the blood-brain barrier (BBB). We describe a therapeutic platform for increasing the brain exposure of enzyme replacement therapies. The enzyme transport vehicle (ETV) is a lysosomal enzyme fused to an Fc domain that has been engineered to bind to the transferrin receptor, which facilitates receptor-mediated transcytosis across the BBB. We demonstrate that ETV fusions containing iduronate 2-sulfatase (ETV:IDS), the lysosomal enzyme deficient in mucopolysaccharidosis type II, exhibited high intrinsic activity and degraded accumulated substrates in both IDS-deficient cell and in vivo models. ETV substantially improved brain delivery of IDS in a preclinical model of disease, enabling enhanced cellular distribution to neurons, astrocytes, and microglia throughout the brain. Improved brain exposure for ETV:IDS translated to a reduction in accumulated substrates in these CNS cell types and peripheral tissues and resulted in a complete correction of downstream disease-relevant pathologies in the brain, including secondary accumulation of lysosomal lipids, perturbed gene expression, neuroinflammation, and neuroaxonal damage. These data highlight the therapeutic potential of the ETV platform for LSDs and provide preclinical proof of concept for TV-enabled therapeutics to treat CNS diseases more broadly.


Asunto(s)
Barrera Hematoencefálica , Iduronato Sulfatasa , Animales , Encéfalo , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático , Lisosomas , Ratones
8.
PLoS One ; 8(6): e67679, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23826333

RESUMEN

Synaptogenesis has been extensively studied along with dendritic spine development in glutamatergic pyramidal neurons, however synapse development in cortical interneurons, which are largely aspiny, is comparatively less well understood. Dact1, one of 3 paralogous Dact (Dapper/Frodo) family members in mammals, is a scaffold protein implicated in both the Wnt/ß-catenin and the Wnt/Planar Cell Polarity pathways. We show here that Dact1 is expressed in immature cortical interneurons. Although Dact1 is first expressed in interneuron precursors during proliferative and migratory stages, constitutive Dact1 mutant mice have no major defects in numbers or migration of these neurons. However, cultured cortical interneurons derived from these mice have reduced numbers of excitatory synapses on their dendrites. We selectively eliminated Dact1 from mouse cortical interneurons using a conditional knock-out strategy with a Dlx-I12b enhancer-Cre allele, and thereby demonstrate a cell-autonomous role for Dact1 during postsynaptic development. Confirming this cell-autonomous role, we show that synapse numbers in Dact1 deficient cortical interneurons are rescued by virally-mediated re-expression of Dact1 specifically targeted to these cells. Synapse numbers in these neurons are also rescued by similarly targeted expression of the Dact1 binding partner Dishevelled-1, and partially rescued by expression of Disrupted in Schizophrenia-1, a synaptic protein genetically implicated in susceptibility to several major mental illnesses. In sum, our results support a novel cell-autonomous postsynaptic role for Dact1, in cooperation with Dishevelled-1 and possibly Disrupted in Schizophrenia-1, in the formation of synapses on cortical interneuron dendrites.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas/metabolismo , Prosencéfalo/citología , Prosencéfalo/crecimiento & desarrollo , Animales , Movimiento Celular , Dendritas/metabolismo , Proteínas Dishevelled , Neuronas GABAérgicas/citología , Regulación del Desarrollo de la Expresión Génica , Interneuronas/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Lentivirus/metabolismo , Ratones , Ratones Noqueados , Ratones Mutantes , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural , Prosencéfalo/metabolismo , Unión Proteica , Proteínas de Unión al ARN , Sinapsis/metabolismo
9.
Commun Integr Biol ; 6(6): e26656, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24567777

RESUMEN

In mice, genetically engineered knockout of the Dapper Antagonist of Catenin-1 (Dact1) locus, which encodes a scaffold protein involved in Wnt signaling, leads to decreased excitatory input formation on dendrites of developing forebrain neurons. We have previously demonstrated this in both (excitatory, glutamatergic) pyramidal neurons of the hippocampus and in (inhibitory GABAergic) interneurons of the cortex. We have also demonstrated that knockout of the Dact1 locus leads to decreased dendrite complexity in cultured hippocampal pyramidal neurons, and to decreased spine formation on dendrites of forebrain pyramidal neurons in vitro and in vivo. Synapse phenotypes resulting from Dact1 loss in cultured cortical interneurons can be rescued by recombinant overexpression of the Dact1 binding partner, Dishevelled-1 (Dvl1), but not by recombinant expression of a constitutively active form of the small GTPase Rac1. This contrasts with dendrite spine phenotypes resulting from Dact1 loss in cultured hippocampal pyramidal neurons, which can be fully rescued by recombinant expression of activated Rac1. Taken together, these data suggest that in maturing forebrain neurons there are molecularly separate requirements for Dact1 in dendrite arborization/spine formation vs. synaptogenesis. Here, we show that the developmental requirement for Dact1 during dendrite arborization, which we previously demonstrated only in hippocampal pyramidal neurons, is also present in cortical interneurons, and we discuss mechanistic implications of this finding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA