Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(46): eabq7240, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36383663

RESUMEN

The BCG (Bacille Calmette-Guérin) vaccine, introduced 100 years ago for tuberculosis prevention, has emerging therapeutic off-target benefits for autoimmunity. In randomized controlled trials, BCG vaccinations were shown to gradually improve two autoimmune conditions, type 1 diabetes (T1D) and multiple sclerosis. Here, we investigate the mechanisms behind the autoimmune benefits and test the hypothesis that this microbe synergy could be due to an impact on the host T cell receptor (TCR) and TCR signal strength. We show a quantitative TCR defect in T1D subjects consisting of a marked reduction in receptor density on T cells due to hypermethylation of TCR-related genes. BCG corrects this defect gradually over 3 years by demethylating hypermethylated sites on members of the TCR gene family. The TCR sequence is not modified through recombination, ruling out a qualitative defect. These findings support an underlying density defect in the TCR affecting TCR signal strength in T1D.

2.
Cell Rep Med ; 3(9): 100728, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36027906

RESUMEN

There is a need for safe and effective platform vaccines to protect against coronavirus disease 2019 (COVID-19) and other infectious diseases. In this randomized, double-blinded, placebo-controlled phase 2/3 trial, we evaluate the safety and efficacy of a multi-dose Bacillus Calmette-Guérin (BCG) vaccine for the prevention of COVID-19 and other infectious disease in a COVID-19-unvaccinated, at-risk-community-based cohort. The at-risk population is made of up of adults with type 1 diabetes. We enrolled 144 subjects and randomized 96 to BCG and 48 to placebo. There were no dropouts over the 15-month trial. A cumulative incidence of 12.5% of placebo-treated and 1% of BCG-treated participants meets criteria for confirmed COVID-19, yielding an efficacy of 92%. The BCG group also displayed fewer infectious disease symptoms and lesser severity and fewer infectious disease events per patient, including COVID-19. There were no BCG-related systemic adverse events. BCG's broad-based infection protection suggests that it may provide platform protection against new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and other pathogens.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Diabetes Mellitus Tipo 1 , Mycobacterium bovis , Adulto , Vacuna BCG/uso terapéutico , COVID-19/prevención & control , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Humanos , SARS-CoV-2 , Vacunación
3.
iScience ; 24(10): 103150, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34646988

RESUMEN

Bacillus Calmette-Guerin (BCG) vaccinations improve glycemic control in juvenile-onset Type I diabetes (T1D), an effect driven by restored sugar transport through aerobic glycolysis. In a pilot clinical trial, T1D, but not latent autoimmune diabetes of adults (LADA), exhibited lower blood sugars after multidose BCG. Using a glucose transport assay, monocytes from T1D subjects showed a large stimulation index with BCG exposures; LADA subjects showed minimal BCG-induced sugar responsiveness. Monocytes from T1D, type 2 diabetes (T2D), and non-diabetic controls (NDC) were all responsive in vitro to BCG by augmented sugar utilization. Adults with prior neonatal BCG vaccination show accelerated glucose transport decades later. Finally, in vivo experiments with the NOD mouse (a T1D model) and obese db/db mice (a T2D model) confirm BCG's blood-sugar-lowering and accelerated glucose metabolism with sufficient dosing. Our results suggest that BCG's benefits for glucose metabolism may be broadly applicable to T1D and T2D, but less to LADA.

4.
iScience ; 23(6): 101139, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32438286

RESUMEN

A change in Presenilin (PS)/γ-secretase activity is linked to essential biological events as well as to the progression of many diseases. However, not much is known about how PS/γ-secretase activity is spatiotemporally regulated in cells. One of the limitations is lack of tools to directly monitor dynamic behavior of the PS/γ-secretase in intact/live cells. Here we present successful development and validation of the Förster resonance energy transfer (FRET)-based biosensors that enable quantitative monitoring of endogenous PS/γ-secretase activity in live cells longitudinally on a cell-by-cell basis. Using these FRET biosensors, we uncovered that PS/γ-secretase activity is heterogeneously regulated among live neurons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA