Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Immunol ; 14: 1155740, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228611

RESUMEN

Mast cells play an important role in disease pathogenesis by secreting immunomodulatory molecules. Mast cells are primarily activated by the crosslinking of their high affinity IgE receptors (FcεRI) by antigen bound immunoglobulin (Ig)E antibody complexes. However, mast cells can also be activated by the mas related G protein-coupled receptor X2 (MRGPRX2), in response to a range of cationic secretagogues, such as substance P (SP), which is associated with pseudo-allergic reactions. We have previously reported that the in vitro activation of mouse mast cells by basic secretagogues is mediated by the mouse orthologue of the human MRGPRX2, MRGPRB2. To further elucidate the mechanism of MRGPRX2 activation, we studied the time-dependent internalization of MRGPRX2 by human mast cells (LAD2) upon stimulation with the neuropeptide SP. In addition, we performed computational studies to identify the intermolecular forces that facilitate ligand-MRGPRX2 interaction using SP. The computational predictions were tested experimentally by activating LAD2 with SP analogs, which were missing key amino acid residues. Our data suggest that mast cell activation by SP causes internalization of MRGPRX2 within 1 min of stimulation. Hydrogen bonds (h-bonds) and salt bridges govern the biding of SP to MRGPRX2. Arg1 and Lys3 in SP are key residues that are involved in both h-bonding and salt bridge formations with Glu164 and Asp184 of MRGPRX2, respectively. In accordance, SP analogs devoid of key residues (SP1 and SP2) failed to activate MRGPRX2 degranulation. However, both SP1 and SP2 caused a comparable release of chemokine CCL2. Further, SP analogs SP1, SP2 and SP4 did not activate tumor necrosis factor (TNF) production. We further show that SP1 and SP2 limit the activity of SP on mast cells. The results provide important mechanistic insight into the events that result in mast cell activation through MRGPRX2 and highlight the important physiochemical characteristics of a peptide ligand that facilitates ligand-MRGPRX2 interactions. The results are important in understanding activation through MRGPRX2, and the intermolecular forces that govern ligand-MRGPRX2 interaction. The elucidation of important physiochemical properties within a ligand that are needed for receptor interaction will aid in designing novel therapeutics and antagonists for MRGPRX2.


Asunto(s)
Mastocitos , Sustancia P , Humanos , Animales , Ratones , Sustancia P/metabolismo , Secretagogos/metabolismo , Ligandos , Inmunoglobulina E/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Neuropéptido/metabolismo
2.
Molecules ; 27(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458648

RESUMEN

Sesquiterpenes (SQs) are volatile compounds made by plants, insects, and marine organisms. SQ have a large range of biological properties and are potent inhibitors and modulators of inflammation, targeting specific components of the nuclear factor-kappaB (NF-κB) signaling pathway and nitric oxide (NO) generation. Because SQs can be isolated from over 1600 genera and 2500 species grown worldwide, they are an attractive source of phytochemical therapeutics. The chemical structure and biosynthesis of SQs is complex, and the SQ scaffold represents extraordinary structural variety consisting of both acyclic and cyclic (mono, bi, tri, and tetracyclic) compounds. These structures can be decorated with a diverse range of functional groups and substituents, generating many stereospecific configurations. In this review, the effect of SQs on inflammation will be discussed in the context of their complex chemistry. Because inflammation is a multifactorial process, we focus on specific aspects of inflammation: the inhibition of NF-kB signaling, disruption of NO production and modulation of dendritic cells, mast cells, and monocytes. Although the molecular targets of SQs are varied, we discuss how these pathways may mediate the effects of SQs on inflammation.


Asunto(s)
Inflamación , Lipopolisacáridos , Sesquiterpenos , Humanos , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Sesquiterpenos/química , Sesquiterpenos/farmacología
3.
Acta Biomater ; 136: 159-169, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34530142

RESUMEN

Peptide based therapeutics are desirable owing to their high biological specificity. However, a number of these fail in clinical testing due to an adverse inflammatory response. Mast cells play a key role in directing the host response to drugs and related products. Although the role of FcεRI receptor is well known, Mas-related G-protein coupled receptor X2 (MRGPRX2) binding of endogenous peptides, and drugs will activate mast cells independent of FcεRI. Identifying peptides that activate mast cells through MRGPRX2, and their respective activation potency, can be used to reduce the failure rate of peptide therapeutics at clinical trial. Moreover, it will allow for peptide design where mast cell activation is actually desired. It was found that FRKKW and WNKWAL are two motifs that activate human LAD2 cells similar to PAMP-12 controls. Peptide activators of MRGPRX2 could be reduced to Xa-(Y)(n ≥ 3)-Xb where: Xa is an aromatic residue; Xb is a hydrophobic residue; and Y is a minimum 3 residue long sequence, containing a minimum of one positively charged residue with the remainder being uncharged residues. Artificial peptides WKKKW and FKKKF were constructed to test this structural functionality and were similar to PAMP-12 controls. Peptides with different activation potentials were found where FRKKW = WKKKW = FKKKF > PAMP-12 = WNKWAL > YKKKY > FRKKANKWALSR = FRKKWNKAALSR > KWKWK > FRKK = WNKWA > KYKYK > NKWALSR = YKKY = WNK. These sequences should be considered when designing peptide-based therapeutics. STATEMENT OF SIGNIFICANCE: Mast cells release immune regulating molecules upon activation that direct host's immune response. MRGPRX2 receptor provides an alternate pathway for mast cell activation that is independent of FcεRI receptor. It is thought that mast cell activation through MRGPRX2 plays a critical role in high failure rates of drugs in clinical trials. Identifying peptide sequences that activate mast cells through MRGPRX2 can serve two important purposes, namely, sequences to avoid when designing peptide therapeutics, and artificial peptides with different activation potentials for mast cells. Herein, we have identified a general amino acid sequence that induces mast cell activation through MRGPRX2. Furthermore, by modulating the identified sequence, artificial peptides have been designed which activate mast cells by varying degrees for therapeutic applications.


Asunto(s)
Mastocitos , Receptores Acoplados a Proteínas G , Secuencia de Aminoácidos , Humanos , Proteínas del Tejido Nervioso , Péptidos/farmacología , Receptores de Neuropéptido
4.
Nanomaterials (Basel) ; 11(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917960

RESUMEN

Biodegradable polymeric nanoparticles (NPs) such as poly(lactic-co-glycolic acid) (PLGA) and polyvinyl alcohol (PVA) have been used as drug delivery systems for natural and synthetic compounds and are designed to control the loading and release of biodegradable materials to target cells, tissues, and organs. Eremophilane-type sesquiterpenes have anti-inflammatory properties but are lipophilic, cytotoxic, and not biocompatible with many cells. To determine whether biodegradable PLGA/PVA could improve the biocompatibility of sesquiterpenes, sesquiterpene-loaded NPs were synthesized and their effects on human mast cells (LAD2), the major effector cells of allergic inflammation, were determined. NPs composed of PLGA/PVA and two types of sesquiterpenes (fukinone, PLGA/PVA-21 and 10ßH-8α,12-epidioxyeremophil-7(11)-en-8ß-ol, PLGA/PVA-22) were produced using a microfluidic synthesis method. The NPs' size distribution and morphology were evaluated by dynamic light scattering and cryogenic transmission electron microscopy (TEM). PLGA/PVA-21 and PLGA/PVA-22 were 60 to 70 nm and were readily internalized by LAD2 as shown by flow cytometry, fluorescence microscopy, and TEM. While unencapsulated sesquiterpenes decreased LAD2 cell viability by 20%, PLGA/PVA-21 and PLGA/PVA-22 did not alter LAD2 viability, showing that encapsulation improved the biocompatibility of the sesquiterpenes. PLGA/PVA-21 and PLGA/PVA-22 decreased the expression of genes encoding the subunits of the high affinity immunoglobulin E receptor (FcεR1α, FcεR1ß, FcεR1γ) and the stem cell factor receptor (Kit,), suggesting that hybrid NPs could alter mast cell responses to antigens and shift their maturation. Similarly, PLGA/PVA-21 and PLGA/PVA-22 inhibited tryptase expression but had no effect on chymase expression, thereby promoting a shift to the tryptase-positive phenotype (MCT). Lastly, PLGA/PVA-21 and PLGA/PVA-22 inhibited mast cell degranulation when the LAD2 cells were activated by IgE crosslinking and FcεRI. Overall, our results suggest that PLGA/PVA-21 and PLGA/PVA-22 alter human mast cell phenotype and activation without modifying viability, making them a more biocompatible approach than treating cells with sesquiterpenes alone.

5.
J Immunol ; 204(8): 2021-2032, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32253270

RESUMEN

Mast cells are tissue-resident immune cells that are involved in inflammation and fibrosis but also serve beneficial roles, including tissue maintenance, angiogenesis, pathogen clearance, and immunoregulation. Their multifaceted response and the ability of their mediators to target multiple organs and tissues means that mast cells play important roles in numerous conditions, including asthma, atopic dermatitis, drug sensitivities, ischemic heart disease, Alzheimer disease, arthritis, irritable bowel syndrome, infections (parasites, bacteria and viruses), and cancer. As a result, mast cells have become an important target for drug discovery and diagnostic research. Recent work has focused on applying novel nanotechnologies to explore cell biology. In this brief review, we will highlight the use of nanomaterials to modify mast cell functions and will discuss the potential of these technologies as research tools for understanding mast cell biology.


Asunto(s)
Mastocitos/inmunología , Nanoestructuras , Nanotecnología , Animales , Humanos , Nanoestructuras/química
6.
Biochem Pharmacol ; 156: 157-167, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30099007

RESUMEN

Anaphylatoxin C3a and adenosine receptors (AR) are implicated in the inflammatory process associated with allergic rhinitis and asthma by modifying mast cell (MC) responses. Possible interactions between these G-protein coupled receptor (GPCR) pathways in MCs have not yet been demonstrated. LAD2 human MC were stimulated with C3a in the presence or absence of AR agonists and antagonists and their adhesion, chemotaxis and mediator release were measured. The pan-specific AR agonist, 5'-N-Ethylcarboxamidoadenosine (NECA) inhibited C3a-induced LAD2 cell migration, adhesion, degranulation, production of CCL2, and ERK1/2 phosphorylation. The selective A2A receptor agonist CGS 21680 inhibited C3a-mediated degranulation, while the A2B and A3 receptor agonists BAY 60-6583 and IB-MECA, respectively, had no effect. Moreover, an A2A receptor antagonist SCH 58261 blocked the inhibitory effect of NECA on C3a-induced degranulation, suggesting that inhibition of degranulation was mediated through the A2A receptor. NECA increased intracellular cAMP in C3a-activated mast cells, suggesting that Gαs protein signals are required for adenosine-induced inhibition of C3a-mediated human mast cell activation. The adenylyl cyclase inhibitor SQ 22536 attenuated the inhibitory effect of NECA on C3a-activated degranulation, and the A2A agonist CSG 21680 potentiated the inhibition of mast cell activation mediated by the A2A receptor. Our results suggest that adenosine inhibits C3a-mediated activation of human mast cells, possibly through a Gαs protein-dependent pathway.


Asunto(s)
Adenosina/farmacología , Complemento C3/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Mastocitos/efectos de los fármacos , Adhesión Celular , Degranulación de la Célula/fisiología , Línea Celular , Quimiotaxis , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo
7.
Int J Immunopathol Pharmacol ; 32: 2058738418787739, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30014756

RESUMEN

Dendritic cell (DC) activation induces expression of co-stimulatory surface molecules, as well as migration into secondary lymphoid organs, where they activate naïve T-cells. A family of plant derivatives, eremophilane-type petasite sesquiterpenes, can regulate the immune system through DC targeting due to their anti-inflammatory effects. Peroxisome proliferator-activated receptor gamma (PPARγ) is involved in inhibition of inflammatory responses and induction of DCs to acquire a mucosal phenotype. Since mucosal DCs are central in innate immune responses, we hypothesized that eremophilane-type petasite sesquiterpenes exerted their anti-inflammatory effects by inhibiting DC maturation and activation through PPARγ. This study assessed the bicyclic eremophilane-type petasite sesquiterpene compounds Fukinone and 10ßH-8α,12-Epidioxyeremophil-7(11)-en-8ß-ol (ZYFDC21 and ZYFDC22) in the maturation and activation of mouse DC. We measured surface expression of co-stimulatory molecules by flow cytometry and cell-free supernatant cytokine production upon lipopolysaccharide stimulation by enzyme-linked immunosorbent assays (ELISAs) in the presence or absence of PPARγ agonists. DCs were generated from C57BL/6 mice bone marrow cells and harvested. Cells were exposed to bicyclic eremophilane-type petasite sesquiterpenes ZYFDC21 or ZYFDC22 in the presence or absence of synthetic PPARγ agonists (GW1929 and TGZ) or the natural PPARγ ligand 15d-PGJ2, followed by overnight activation with LPS. We observed differences in the upregulation of surface expression of CD86, along with TNF, IL-6, and IL-12p70 released by DCs stimulated with LPS, when using combinations of bicyclic eremophilane-type petasite sesquiterpenes ZYFDC21 or ZYFDC22, and PPARγ agonists, in particular the PPARγ ligand 15d-PGJ2. Our results indicate that bicyclic eremophilane-type petasite sesquiterpenes ZYFDC21 or ZYFDC22 inhibit maturation and activation of DC, and this activity is augmented upon PPARγ activation.


Asunto(s)
Antiinflamatorios/farmacología , Benzofenonas/farmacología , Células Dendríticas/efectos de los fármacos , PPAR gamma/agonistas , Prostaglandina D2/análogos & derivados , Sesquiterpenos/farmacología , Troglitazona/farmacología , Tirosina/análogos & derivados , Animales , Células de la Médula Ósea/citología , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/metabolismo , Sinergismo Farmacológico , Femenino , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Sesquiterpenos Policíclicos , Prostaglandina D2/farmacología , Tirosina/farmacología
8.
Adv Healthc Mater ; 6(18)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28665558

RESUMEN

Mast cells play a distinct role in the innate immune response. Engineered microenvironments for the express purpose of influencing mast cell activity will provide a novel means of designing biomaterials, as well as a means to systematically investigate mast cell biology in a 3D setting. Here, the effect of nanoscaffolds composed of self-assembling peptides, namely (RADA)4 , on bone-marrow-derived murine mast cell (BMMC) activity is reported. Unlike most studies that stimulate mast cells to induce adhesion, this results show that BMMCs spontaneously adhere to the artificial nanoscaffold without initiating their activation. It is observed that the classical immunoglobulin (IgE) antigen-mediated degranulation of adhered BMMC is inhibited by the nanoscaffold, while non-IgE (A23187)-induced degranulation is unaffected. The inhibition of IgE-antigen-mediated degranulation is likely a result of inhibited molecular diffusion within the matrix; antigen diffusion, IgE-FcεRI complex shuttling, and/or formation of multiple IgE-FcεRI clusters may be physically hindered in the presence of the polyvalent nanofiber network. Moreover, the IgE/antigen-induced inflammatory cytokine tumor necrosis factor α release from adherent BMMCs is significantly reduced likely due to interaction with the nanofiber matrix. This work is considered the first step in quantifying mast cell activity in artificial matrices composed of self-assembling peptides.


Asunto(s)
Adhesión Celular/fisiología , Inmunoglobulina E/metabolismo , Mastocitos/fisiología , Nanopartículas/metabolismo , Péptidos/metabolismo , Animales , Antígenos/metabolismo , Células de la Médula Ósea/fisiología , Línea Celular , Citocinas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Nanofibras/química , Receptores de IgE/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
10.
Respir Res ; 15: 71, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24970330

RESUMEN

BACKGROUND: Pulmonary fibrotic diseases induce significant morbidity and mortality, for which there are limited therapeutic options available. Rac2, a ras-related guanosine triphosphatase expressed mainly in hematopoietic cells, is a crucial molecule regulating a diversity of mast cell, macrophage, and neutrophil functions. All these cell types have been implicated in the development of pulmonary fibrosis in a variety of animal models. For the studies described here we hypothesized that Rac2 deficiency protects mice from bleomycin-induced pulmonary fibrosis. METHODS: To determine the role of Rac2 in pulmonary fibrosis we used a bleomycin-induced mouse model. Anesthetized C57BL/6 wild type and rac2-/- mice were instilled intratracheally with bleomycin sulphate (1.25 U/Kg) or saline as control. Bronchoalveolar lavage (BAL) samples were collected at days 3 and 7 of treatment and analyzed for matrix metalloproteinases (MMPs). On day 21 after bleomycin treatment, we measured airway resistance and elastance in tracheotomized animals. Lung sections were stained for histological analysis, while homogenates were analyzed for hydroxyproline and total collagen content. RESULTS: BLM-treated rac2-/- mice had reduced MMP-9 levels in the BAL on day 3 and reduced neutrophilia and TNF and CCL3/MIP-1α levels in the BAL on day 7 compared to BLM-treated WT mice. We also showed that rac2-/- mice had significantly lower mortality (30%) than WT mice (70%) at day 21 of bleomycin treatment. Lung function was diminished in bleomycin-treated WT mice, while it was unaffected in bleomycin-treated rac2-/- mice. Histological analysis of inflammation and fibrosis as well as collagen and hydroxyproline content in the lungs did not show significant differences between BLM-treated rac2-/- and WT and mice that survived to day 21. CONCLUSION: Rac2 plays an important role in bleomycin-induced lung injury. It is an important signaling molecule leading to BLM-induced mortality and it also mediates the physiological changes seen in the airways after BLM-induced injury.


Asunto(s)
Bleomicina/toxicidad , Neumonía/inducido químicamente , Neumonía/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Proteínas de Unión al GTP rac/deficiencia , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/mortalidad , Fibrosis Pulmonar/mortalidad , Proteína RCA2 de Unión a GTP
11.
Am J Respir Cell Mol Biol ; 46(2): 207-16, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21903873

RESUMEN

Asthma affects an estimated 300 million people worldwide and accounts for 1 of 250 deaths and 15 million disability-adjusted life years lost annually. Plastic-adherent bone marrow-derived cell (BMC) administration holds therapeutic promise in regenerative medicine. However, given the low cell engraftment in target organs, including the lung, cell replacement cannot solely account for the reported therapeutic benefits. This suggests that BMCs may act by secreting soluble factors. BMCs also possess antiinflammatory and immunomodulatory properties and may therefore be beneficial for asthma. Our objective was to investigate the therapeutic potential of BMC-secreted factors in murine asthma. In a model of acute and chronic asthma, intranasal instillation of BMC conditioned medium (CdM) prevented airway hyperresponsiveness (AHR) and inflammation. In the chronic asthma model, CdM prevented airway smooth muscle thickening and peribronchial inflammation while restoring blunted salbutamol-induced bronchodilation. CdM reduced lung levels of the T(H)2 inflammatory cytokines IL-4 and IL-13 and increased levels of IL-10. CdM up-regulated an IL-10-induced and IL-10-secreting subset of T regulatory lymphocytes and promoted IL-10 expression by lung macrophages. Adiponectin (APN), an antiinflammatory adipokine found in CdM, prevented AHR, airway smooth muscle thickening, and peribronchial inflammation, whereas the effect of CdM in which APN was neutralized or from APN knock-out mice was attenuated compared with wild-type CdM. Our study provides evidence that BMC-derived soluble factors prevent murine asthma and suggests APN as one of the protective factors. Further identification of BMC-derived factors may hold promise for novel approaches in the treatment of asthma.


Asunto(s)
Asma/prevención & control , Células de la Médula Ósea/patología , Animales , Asma/patología , Líquido del Lavado Bronquioalveolar , Masculino , Ratones , Ratones Endogámicos BALB C
12.
Allergy Asthma Clin Immunol ; 7: 22, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22168152

RESUMEN

BACKGROUND: Allergic sensitization to aeroallergens develops in response to mucosal exposure to these allergens. Allergic sensitization may lead to the development of asthma, which is characterized by chronic airway inflammation. The objective of this study is to describe in detail a model of mucosal exposure to cockroach allergens in the absence of an exogenous adjuvant. METHODS: Cockroach extract (CE) was administered to mice intranasally (i.n.) daily for 5 days, and 5 days later mice were challenged with CE for 4 consecutive days. A second group received CE i.n. for 3 weeks. Airway hyperresponsiveness (AHR) was assessed 24 h after the last allergen exposure. Allergic airway inflammation was assessed by BAL and lung histology 48 h after the last allergen exposure. Antigen-specific antibodies were assessed in serum. Lungs were excised from mice from measurement of cytokines and chemokines in whole lung lysate. RESULTS: Mucosal exposure of Balb/c mice to cockroach extract induced airway eosinophilic inflammation, AHR and cockroach-specific IgG1; however, AHR to methacholine was absent in the long term group. Lung histology showed patchy, multicentric damage with inflammatory infiltrates at the airways in both groups. Lungs from mice from the short term group showed increased IL-4, CCL11, CXCL1 and CCL2 protein levels. IL4 and CXCL1 were also increased in the BAL of cockroach-sensitized mice in the short-term protocol. CONCLUSIONS: Mucosal exposure to cockroach extract in the absence of adjuvant induces allergic airway sensitization characterized by AHR, the presence of Th2 cytokines in the lung and eosinophils in the airways.

13.
J Immunol ; 186(5): 3164-72, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21270400

RESUMEN

We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization.


Asunto(s)
Alérgenos/inmunología , Blattellidae/inmunología , Receptor PAR-2/metabolismo , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/metabolismo , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/fisiología , Administración Intranasal , Alérgenos/administración & dosificación , Animales , Blattellidae/enzimología , Hiperreactividad Bronquial/enzimología , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/metabolismo , Línea Celular Transformada , Modelos Animales de Enfermedad , Activación Enzimática/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Mucosa Nasal/enzimología , Mucosa Nasal/inmunología , Mucosa Nasal/metabolismo , Ratas , Receptor PAR-2/deficiencia , Receptor PAR-2/inmunología , Hipersensibilidad Respiratoria/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA