Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(7)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39064325

RESUMEN

Size effects, high thrust forces, limited heat dissipation, and tool deterioration are just some of the challenges that deep microdrilling poses, underscoring the importance of effective process control to ensure quality. In this paper, an investigation performed on a microdrilling process on pure magnesium using a 0.138 mm diameter microdrill to achieve an aspect ratio equal to 36 is proposed. The effect of the variation of the cutting parameters feed per tooth fz and cutting speed vc was studied on thrust force, supporting hole quality evaluation in terms of burr height, entrance, and inner diameters. The results showed that fz significantly influences the hole quality. In fact, as fz increases, the burr height decreases and the inner diameter approaches the nominal diameter. However, optimizing the hole geometry with high feed per tooth values increases the thrust forces, compromising tool life. In fact, a significant dependence of the thrust force on both cutting parameters was found. In this scenario, increasing vc can mitigate the high thrust forces by inducing material softening. The study results improve precision manufacturing by refining parameters, ensuring the quality and reliability of magnesium-based microcomponents.

2.
Materials (Basel) ; 14(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203827

RESUMEN

The necessity of monitoring the abrasive waterjet (AWJ) processes increases with the spreading of this tool into the machining processes. The forces produced on the workpiece during the abrasive waterjet machining can yield some valuable information. Therefore, a special waterjet-force measuring device designed and produced in the past has been used for the presented research. It was tested during the AWJ cutting processes, because they are the most common and the best described up-to-date AWJ applications. Deep studies of both the cutting process and the respective force signals led to the decision that the most appropriate indication factor is the tangential-to-normal force ratio (TNR). Three theorems concerning the TNR were formulated and investigated. The first theorem states that the TNR strongly depends on the actual-to-limit traverse speed ratio. The second theorem claims that the TNR relates to the cutting-to-deformation wear ratio inside the kerf. The third theorem states that the TNR value changes when the cutting head and the respective jet axis are tilted so that a part of the jet velocity vector projects into the traverse speed direction. It is assumed that the cutting-to-deformation wear ratio increases in a certain range of tilting angles of the cutting head. This theorem is supported by measured data and can be utilized in practice for the development of a new method for the monitoring of the abrasive waterjet cutting operations. Comparing the tilted and the non-tilted jet, we detected the increase of the TNR average value from 1.28 ± 0.16 (determined for the declination angle 20° and the respective tilting angle 10°) up to 2.02 ± 0.25 (for the declination angle 30° and the respective tilting angle of 15°). This finding supports the previously predicted and published assumptions that the tilting of the cutting head enables an increase of the cutting wear mode inside the forming kerf, making the process more efficient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA