Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Commun ; 15(1): 4034, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740814

RESUMEN

Mechanisms underlying human hepatocyte growth in development and regeneration are incompletely understood. In vitro, human fetal hepatocytes (FH) can be robustly grown as organoids, while adult primary human hepatocyte (PHH) organoids remain difficult to expand, suggesting different growth requirements between fetal and adult hepatocytes. Here, we characterize hepatocyte organoid outgrowth using temporal transcriptomic and phenotypic approaches. FHs initiate reciprocal transcriptional programs involving increased proliferation and repressed lipid metabolism upon initiation of organoid growth. We exploit these insights to design maturation conditions for FH organoids, resulting in acquisition of mature hepatocyte morphological traits and increased expression of functional markers. During PHH organoid outgrowth in the same culture condition as for FHs, the adult transcriptomes initially mimic the fetal transcriptomic signatures, but PHHs rapidly acquire disbalanced proliferation-lipid metabolism dynamics, resulting in steatosis and halted organoid growth. IL6 supplementation, as emerged from the fetal dataset, and simultaneous activation of the metabolic regulator FXR, prevents steatosis and promotes PHH proliferation, resulting in improved expansion of the derived organoids. Single-cell RNA sequencing analyses reveal preservation of their fetal and adult hepatocyte identities in the respective organoid cultures. Our findings uncover mitogen requirements and metabolic differences determining proliferation of hepatocytes changing from development to adulthood.


Asunto(s)
Proliferación Celular , Hepatocitos , Metabolismo de los Lípidos , Organoides , Transcriptoma , Humanos , Hepatocitos/metabolismo , Hepatocitos/citología , Organoides/metabolismo , Feto/metabolismo , Adulto , Interleucina-6/metabolismo , Interleucina-6/genética , Células Cultivadas
2.
Cell ; 187(3): 712-732.e38, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194967

RESUMEN

Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.


Asunto(s)
Encéfalo , Organoides , Humanos , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Matriz Extracelular/metabolismo , Células Madre Pluripotentes/metabolismo , Prosencéfalo/citología , Técnicas de Cultivo de Tejidos , Células Madre/metabolismo , Morfogénesis
3.
Nat Commun ; 14(1): 7361, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016960

RESUMEN

Pluripotent stem cell (PSC)-derived human brain organoids enable the study of human brain development in vitro. Typically, the fate of PSCs is guided into subsequent specification steps through static medium switches. In vivo, morphogen gradients are critical for proper brain development and determine cell specification, and associated defects result in neurodevelopmental disorders. Here, we show that initiating neural induction in a temporal stepwise gradient guides the generation of brain organoids composed of a single, self-organized apical-out neuroepithelium, termed ENOs (expanded neuroepithelium organoids). This is at odds with standard brain organoid protocols in which multiple and independent neuroepithelium units (rosettes) are formed. We find that a prolonged, decreasing gradient of TGF-ß signaling is a determining factor in ENO formation and allows for an extended phase of neuroepithelium expansion. In-depth characterization reveals that ENOs display improved cellular morphology and tissue architectural features that resemble in vivo human brain development, including expanded germinal zones. Consequently, cortical specification is enhanced in ENOs. ENOs constitute a platform to study the early events of human cortical development and allow interrogation of the complex relationship between tissue architecture and cellular states in shaping the developing human brain.


Asunto(s)
Encéfalo , Células Madre Pluripotentes , Humanos , Organoides , Neurogénesis , Desarrollo Embrionario , Diferenciación Celular
4.
Nat Commun ; 14(1): 2377, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137901

RESUMEN

Fibrolamellar carcinoma (FLC) is a lethal primary liver cancer, affecting young patients in absence of chronic liver disease. Molecular understanding of FLC tumorigenesis is limited, partly due to the scarcity of experimental models. Here, we CRISPR-engineer human hepatocyte organoids to recreate different FLC backgrounds, including the predominant genetic alteration, the DNAJB1-PRKACA fusion, as well as a recently reported background of FLC-like tumors, encompassing inactivating mutations of BAP1 and PRKAR2A. Phenotypic characterizations and comparisons with primary FLC tumor samples revealed mutant organoid-tumor similarities. All FLC mutations caused hepatocyte dedifferentiation, yet only combined loss of BAP1 and PRKAR2A resulted in hepatocyte transdifferentiation into liver ductal/progenitor-like cells that could exclusively grow in a ductal cell environment. BAP1-mutant hepatocytes represent primed cells attempting to proliferate in this cAMP-stimulating environment, but require concomitant PRKAR2A loss to overcome cell cycle arrest. In all analyses, DNAJB1-PRKACAfus organoids presented with milder phenotypes, suggesting differences between FLC genetic backgrounds, or for example the need for additional mutations, interactions with niche cells, or a different cell-of-origin. These engineered human organoid models facilitate the study of FLC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/metabolismo , Transdiferenciación Celular/genética , Carcinoma Hepatocelular/metabolismo , Mutación , Hepatocitos/metabolismo , Organoides/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Subunidad RIIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética
5.
Nat Biotechnol ; 41(11): 1567-1581, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36823355

RESUMEN

The lack of registered drugs for nonalcoholic fatty liver disease (NAFLD) is partly due to the paucity of human-relevant models for target discovery and compound screening. Here we use human fetal hepatocyte organoids to model the first stage of NAFLD, steatosis, representing three different triggers: free fatty acid loading, interindividual genetic variability (PNPLA3 I148M) and monogenic lipid disorders (APOB and MTTP mutations). Screening of drug candidates revealed compounds effective at resolving steatosis. Mechanistic evaluation of effective drugs uncovered repression of de novo lipogenesis as the convergent molecular pathway. We present FatTracer, a CRISPR screening platform to identify steatosis modulators and putative targets using APOB-/- and MTTP-/- organoids. From a screen targeting 35 genes implicated in lipid metabolism and/or NAFLD risk, FADS2 (fatty acid desaturase 2) emerged as an important determinant of hepatic steatosis. Enhancement of FADS2 expression increases polyunsaturated fatty acid abundancy which, in turn, reduces de novo lipogenesis. These organoid models facilitate study of steatosis etiology and drug targets.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Evaluación Preclínica de Medicamentos , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Apolipoproteínas B/metabolismo , Hígado/metabolismo
6.
Commun Biol ; 5(1): 1094, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241695

RESUMEN

The myriad of available hepatocyte in vitro models provides researchers the possibility to select hepatocyte-like cells (HLCs) for specific research goals. However, direct comparison of hepatocyte models is currently challenging. We systematically searched the literature and compared different HLCs, but reported functions were limited to a small subset of hepatic functions. To enable a more comprehensive comparison, we developed an algorithm to compare transcriptomic data across studies that tested HLCs derived from hepatocytes, biliary cells, fibroblasts, and pluripotent stem cells, alongside primary human hepatocytes (PHHs). This revealed that no HLC covered the complete hepatic transcriptome, highlighting the importance of HLC selection. HLCs derived from hepatocytes had the highest transcriptional resemblance to PHHs regardless of the protocol, whereas the quality of fibroblasts and PSC derived HLCs varied depending on the protocol used. Finally, we developed and validated a web application (HLCompR) enabling comparison for specific pathways and addition of new HLCs. In conclusion, our comprehensive transcriptomic comparison of HLCs allows selection of HLCs for specific research questions and can guide improvements in culturing conditions.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular/genética , Hepatocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Transcriptoma
8.
Dev Biol ; 474: 37-47, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33571486

RESUMEN

Canonical Wnt signaling plays a key role during organ development, homeostasis and regeneration and these processes are conserved between invertebrates and vertebrates. Mutations in Wnt pathway components are commonly found in various types of cancer. Upon activation of canonical Wnt signaling, ß-catenin binds in the nucleus to members of the TCF-LEF family and activates the transcription of target genes. Multiple Wnt target genes, including Lgr5/LGR5 and Axin2/AXIN2, have been identified in mouse models and human cancer cell lines. Here we set out to identify the transcriptional targets of Wnt signaling in five human tissues using organoid technology. Organoids are derived from adult stem cells and recapitulate the functionality as well as the structure of the original tissue. Since the Wnt pathway is critical to maintain the organoids from the human intestine, colon, liver, pancreas and stomach, organoid technology allows us to assess Wnt target gene expression in a human wildtype situation. We performed bulk mRNA sequencing of organoids immediately after inhibition of Wnt pathway and identified 41 genes as commonly regulated genes in these tissues. We also identified large numbers of target genes specific to each tissue. One of the shared target genes is TEAD4, a transcription factor driving expression of YAP/TAZ signaling target genes. In addition to TEAD4, we identified a variety of genes which encode for proteins that are involved in Wnt-independent pathways, implicating the possibility of direct crosstalk between Wnt signaling and other pathways. Collectively, this study identified tissue-specific and common Wnt target gene signatures and provides evidence for a conserved role for these Wnt targets in different tissues.


Asunto(s)
Sistema Digestivo/citología , Regulación del Desarrollo de la Expresión Génica , Organoides/metabolismo , Vía de Señalización Wnt , Adulto , Sistema Digestivo/embriología , Sistema Digestivo/metabolismo , Endodermo , Perfilación de la Expresión Génica , Humanos , Especificidad de Órganos
9.
Nat Protoc ; 16(1): 182-217, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33247284

RESUMEN

The liver is composed of two epithelial cell types: hepatocytes and liver ductal cells. Culture conditions for expansion of human liver ductal cells in vitro as organoids were previously described in a protocol; however, primary human hepatocytes remained hard to expand, until recently. In this protocol, we provide full details of how we overcame this limitation, establishing culture conditions that facilitate long-term expansion of human fetal hepatocytes as organoids. In addition, we describe how to generate (multi) gene knockouts using CRISPR-Cas9 in both human fetal hepatocyte and adult liver ductal organoid systems. Using a CRISPR-Cas9 and homology-independent organoid transgenesis (CRISPR-HOT) approach, efficient gene knockin can be achieved in these systems. These gene knockin and knockout approaches, and their multiplexing, should be useful for a variety of applications, such as disease modeling, investigating gene functions and studying processes, such as cellular differentiation and cell division. The protocol to establish human fetal hepatocyte organoid cultures takes ~1-2 months. The protocols to genome engineer human liver ductal organoids and human fetal hepatocyte organoids take 2-3 months.


Asunto(s)
Sistemas CRISPR-Cas , Hepatocitos/citología , Hígado/citología , Organoides/citología , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Feto/citología , Feto/metabolismo , Edición Génica/métodos , Técnicas de Sustitución del Gen/métodos , Técnicas de Inactivación de Genes/métodos , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Organoides/metabolismo
10.
Cell Stem Cell ; 27(5): 705-731, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33157047

RESUMEN

CRISPR-Cas technology has revolutionized biological research and holds great therapeutic potential. Here, we review CRISPR-Cas systems and their latest developments with an emphasis on application to human cells. We also discuss how different CRISPR-based strategies can be used to accomplish a particular genome engineering goal. We then review how different CRISPR tools have been used in genome engineering of human stem cells in vitro, covering both the pluripotent (iPSC/ESC) and somatic adult stem cell fields and, in particular, 3D organoid cultures. Finally, we discuss the progress and challenges associated with CRISPR-based genome editing of human stem cells for therapeutic use.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Organoides , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica , Ingeniería Genética , Humanos
12.
Cell ; 181(6): 1291-1306.e19, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32407674

RESUMEN

Enteroendocrine cells (EECs) sense intestinal content and release hormones to regulate gastrointestinal activity, systemic metabolism, and food intake. Little is known about the molecular make-up of human EEC subtypes and the regulated secretion of individual hormones. Here, we describe an organoid-based platform for functional studies of human EECs. EEC formation is induced in vitro by transient expression of NEUROG3. A set of gut organoids was engineered in which the major hormones are fluorescently tagged. A single-cell mRNA atlas was generated for the different EEC subtypes, and their secreted products were recorded by mass-spectrometry. We note key differences to murine EECs, including hormones, sensory receptors, and transcription factors. Notably, several hormone-like molecules were identified. Inter-EEC communication is exemplified by secretin-induced GLP-1 secretion. Indeed, individual EEC subtypes carry receptors for various EEC hormones. This study provides a rich resource to study human EEC development and function.


Asunto(s)
Células Enteroendocrinas/metabolismo , ARN Mensajero/genética , Células Cultivadas , Hormonas Gastrointestinales/genética , Tracto Gastrointestinal/metabolismo , Péptido 1 Similar al Glucagón/genética , Humanos , Organoides/metabolismo , Factores de Transcripción/genética , Transcriptoma/genética
13.
Nat Cell Biol ; 22(3): 321-331, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32123335

RESUMEN

CRISPR-Cas9 technology has revolutionized genome editing and is applicable to the organoid field. However, precise integration of exogenous DNA sequences into human organoids is lacking robust knock-in approaches. Here, we describe CRISPR-Cas9-mediated homology-independent organoid transgenesis (CRISPR-HOT), which enables efficient generation of knock-in human organoids representing different tissues. CRISPR-HOT avoids extensive cloning and outperforms homology directed repair (HDR) in achieving precise integration of exogenous DNA sequences into desired loci, without the necessity to inactivate TP53 in untransformed cells, which was previously used to increase HDR-mediated knock-in. CRISPR-HOT was used to fluorescently tag and visualize subcellular structural molecules and to generate reporter lines for rare intestinal cell types. A double reporter-in which the mitotic spindle was labelled by endogenously tagged tubulin and the cell membrane by endogenously tagged E-cadherin-uncovered modes of human hepatocyte division. Combining tubulin tagging with TP53 knock-out revealed that TP53 is involved in controlling hepatocyte ploidy and mitotic spindle fidelity. CRISPR-HOT simplifies genome editing in human organoids.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Técnicas de Sustitución del Gen/métodos , Organoides/citología , Hepatocitos/citología , Hepatocitos/ultraestructura , Humanos , Intestinos/citología , Hígado/citología , Organoides/ultraestructura , Huso Acromático/ultraestructura , Proteína p53 Supresora de Tumor/fisiología
15.
Nat Commun ; 11(1): 135, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919362

RESUMEN

Functional plasticity of the brain decreases during ageing causing marked deficits in contextual learning, allocentric navigation and episodic memory. Adult neurogenesis is a prime example of hippocampal plasticity promoting the contextualisation of information and dramatically decreases during ageing. We found that a genetically-driven expansion of neural stem cells by overexpression of the cell cycle regulators Cdk4/cyclinD1 compensated the age-related decline in neurogenesis. This triggered an overall inhibitory effect on the trisynaptic hippocampal circuit resulting in a changed profile of CA1 sharp-wave ripples known to underlie memory consolidation. Most importantly, increased neurogenesis rescued the age-related switch from hippocampal to striatal learning strategies by rescuing allocentric navigation and contextual memory. Our study demonstrates that critical aspects of hippocampal function can be reversed in old age, or compensated throughout life, by exploiting the brain's endogenous reserve of neural stem cells.


Asunto(s)
Hipocampo/fisiología , Aprendizaje/fisiología , Consolidación de la Memoria/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Envejecimiento/fisiología , Animales , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Femenino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL
16.
Cell Stem Cell ; 24(6): 927-943.e6, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31130514

RESUMEN

The deubiquitinating enzyme BAP1 is a tumor suppressor, among others involved in cholangiocarcinoma. BAP1 has many proposed molecular targets, while its Drosophila homolog is known to deubiquitinate histone H2AK119. We introduce BAP1 loss-of-function by CRISPR/Cas9 in normal human cholangiocyte organoids. We find that BAP1 controls the expression of junctional and cytoskeleton components by regulating chromatin accessibility. Consequently, we observe loss of multiple epithelial characteristics while motility increases. Importantly, restoring the catalytic activity of BAP1 in the nucleus rescues these cellular and molecular changes. We engineer human liver organoids to combine four common cholangiocarcinoma mutations (TP53, PTEN, SMAD4, and NF1). In this genetic background, BAP1 loss results in acquisition of malignant features upon xenotransplantation. Thus, control of epithelial identity through the regulation of chromatin accessibility appears to be a key aspect of BAP1's tumor suppressor function. Organoid technology combined with CRISPR/Cas9 provides an experimental platform for mechanistic studies of cancer gene function in a human context.


Asunto(s)
Colangiocarcinoma/genética , Cromatina/metabolismo , Células Epiteliales/fisiología , Neoplasias Hepáticas/genética , Hígado/fisiología , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Bioingeniería , Carcinogénesis , Células Cultivadas , Cromatina/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Citoesqueleto/metabolismo , Femenino , Humanos , Mutación con Pérdida de Función/genética , Ratones , Ratones SCID , Organoides , Trasplante Heterólogo , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética
17.
Nat Biotechnol ; 37(3): 303-313, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30833775

RESUMEN

Adult stem cell-derived organoids are three-dimensional epithelial structures that recapitulate fundamental aspects of their organ of origin. We describe conditions for the long-term growth of primary kidney tubular epithelial organoids, or 'tubuloids'. The cultures are established from human and mouse kidney tissue and can be expanded for at least 20 passages (>6 months) while retaining a normal number of chromosomes. In addition, cultures can be established from human urine. Human tubuloids represent proximal as well as distal nephron segments, as evidenced by gene expression, immunofluorescence and tubular functional analyses. We apply tubuloids to model infectious, malignant and hereditary kidney diseases in a personalized fashion. BK virus infection of tubuloids recapitulates in vivo phenomena. Tubuloids are established from Wilms tumors. Kidney tubuloids derived from the urine of a subject with cystic fibrosis allow ex vivo assessment of treatment efficacy. Finally, tubuloids cultured on microfluidic organ-on-a-chip plates adopt a tubular conformation and display active (trans-)epithelial transport function.


Asunto(s)
Riñón/citología , Nefronas/citología , Organoides/citología , Medicina de Precisión , Adulto , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/genética , Humanos , Riñón/crecimiento & desarrollo , Enfermedades Renales , Ratones , Nefronas/metabolismo , Organoides/metabolismo , Orina/citología
18.
Cell ; 175(6): 1591-1606.e19, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30500538

RESUMEN

The mammalian liver possesses a remarkable regenerative ability. Two modes of damage response have been described: (1) The "oval cell" response emanates from the biliary tree when all hepatocytes are affected by chronic liver disease. (2) A massive, proliferative response of mature hepatocytes occurs upon acute liver damage such as partial hepatectomy (PHx). While the oval cell response has been captured in vitro by growing organoids from cholangiocytes, the hepatocyte proliferative response has not been recapitulated in culture. Here, we describe the establishment of a long-term 3D organoid culture system for mouse and human primary hepatocytes. Organoids can be established from single hepatocytes and grown for multiple months, while retaining key morphological, functional and gene expression features. Transcriptional profiles of the organoids resemble those of proliferating hepatocytes after PHx. Human hepatocyte organoids proliferate extensively after engraftment into mice and thus recapitulate the proliferative damage-response of hepatocytes.


Asunto(s)
Proliferación Celular , Hepatocitos/metabolismo , Organoides/metabolismo , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Hepatocitos/citología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Organoides/citología , Células Madre/citología , Células Madre/metabolismo , Factores de Tiempo
19.
Cell Rep ; 25(3): 690-701.e8, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332648

RESUMEN

Arginine methylation is a post-translational modification that plays pivotal roles in signal transduction and gene transcription during cell fate determination. We found protein methyltransferase 6 (PRMT6) to be frequently downregulated in hepatocellular carcinoma (HCC) and its expression to negatively correlate with aggressive cancer features in HCC patients. Silencing of PRMT6 promoted the tumor-initiating, metastasis, and therapy resistance potential of HCC cell lines and patient-derived organoids. Consistently, loss of PRMT6 expression aggravated liver tumorigenesis in a chemical-induced HCC PRMT6 knockout (PRMT6-/-) mouse model. Integrated transcriptome and protein-protein interaction studies revealed an enrichment of genes implicated in RAS signaling and showed that PRMT6 interacted with CRAF on arginine 100, which decreased its RAS binding potential and altered its downstream MEK/ERK signaling. Our work describes a critical repressive function for PRMT6 in maintenance of HCC cells by regulating RAS binding and MEK/ERK signaling via methylation of CRAF on arginine 100.


Asunto(s)
Carcinoma Hepatocelular/patología , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/patología , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Animales , Apoptosis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferación Celular , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/fisiología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas raf/genética , Quinasas raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
20.
Nat Cell Biol ; 20(8): 909-916, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30038251

RESUMEN

Enteroendocrine cells (EECs) control a wide range of physiological processes linked to metabolism1. We show that EEC hormones are differentially expressed between crypts (for example, Glp1) and villi (for example, secretin). As demonstrated by single-cell mRNA sequencing using murine Lgr5+ cell-derived organoids, BMP4 signals alter the hormone expression profiles of individual EECs to resemble those found in the villus. Accordingly, BMP4 induces hormone switching of EECs migrating up the crypt-villus axis in vivo. Our findings imply that EEC lineages in the small intestine exhibit a more flexible hormone repertoire than previously proposed. We also describe a protocol to generate human EECs in organoids and demonstrate a similar regulation of hormone expression by BMP signalling. These findings establish alternative strategies to target EECs with therapeutically relevant hormone production through BMP modulation.


Asunto(s)
Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula , Movimiento Celular/efectos de los fármacos , Células Enteroendocrinas/metabolismo , Hormonas Gastrointestinales/metabolismo , Intestino Delgado/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Humanos , Intestino Delgado/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA