Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Neurobiol ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39313657

RESUMEN

Neurodegenerative disorders like Huntington's disease (HD) are a major threat to human health, with severe gait abnormalities and pathological changes (oxidative stress, neuroinflammation, and apoptosis) playing important roles in their development. The effects of artemisinin (ART) alone and in combination with the ERK antagonist PD98059 against 3-nitropropionic acid (3-NPA)-induced cell death and oxidative stress in SH-SY5Y cells were determined using the MTT and DCFH-DA assays, as well as RT-qPCR assays. In vivo, possible neuroprotective effects of ART (10, 20, and 40 mg/kg i.p.) against the neurotoxicity generated by 21-day 3-NPA (10 mg/kg i.p.) treatment was evaluated in rats by assessing behavioral parameters on days 1, 14, and 21. Further, various biochemical, inflammatory, apoptotic markers, histopathological changes, and protein expression were assessed using brain striatal samples. ART significantly mitigated the neurotoxic effect of 3-NPA in SH-SY5Y cells by regulating the mRNA expression of ERK, Bax, Bcl2, and cytochrome C. However, ART's neuroprotective activity was reduced in the presence of PD98059. Also, ART treatment for 21 days substantially alleviated the behavioral impairments associated with 3-NPA toxicity. It reduced the oxidative stress induced by 3-NPA, as evidenced by the lower levels of MDA, nitrite, and improved catalase, SOD activity, and GSH levels. ART treatment restored 3-NPA-induced histopathological alterations in the striatal area. ART effectively suppressed neuroinflammatory (IL-6) and apoptotic markers (caspase 3 and 9), increasing BDNF levels and restoring the p-ERK1/2, Nrf2, and HO-1 expression. ART could exert its neuroprotective effect via antioxidant, anti-inflammatory, and antiapoptotic properties with a possible involvement of the ERK/BDNF/Nrf2/HO-1 pathway.

2.
Inflammopharmacology ; 32(5): 2921-2941, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38992324

RESUMEN

"Path to a good mood lies through the gut." This statement seems to imply that it has long been believed that the gut is connected with the brain. Research has shown that eating food activates the reward system and releases dopamine (DA), establishing a link between the peripheral and central nervous system. At the same time, researchers also trust that the gut is involved in the onset of many diseases, including Parkinson's disease (PD), in which gastrointestinal dysfunction is considered a prevalent symptom. Reports suggest that PD starts from the gut and reaches the brain via the vagus nerve. Recent studies have revealed an intriguing interaction between the gut and brain, which links gut dysbiosis to the etiology of PD. This review aims to explore the mechanistic pathway how reactive oxygen species (ROS) generation in the gut affects the makeup and operation of the dopamine circuitry in the brain. Our primary concern is ROS generation in the gut, which disrupts the gut microbiome (GM), causing α-synuclein accumulation and inflammation. This trio contributes to the loss of DA neurons in the brain, resulting in PD development. This review also compiles pre-clinical and clinical studies on antioxidants, demonstrating that antioxidants reduce ROS and increase DA levels. Collectively, the study highlights the necessity of comprehending the gut-brain axis for unraveling the riddles of PD pathogenesis and considering new therapeutic approaches.


Asunto(s)
Eje Cerebro-Intestino , Encéfalo , Progresión de la Enfermedad , Microbioma Gastrointestinal , Enfermedad de Parkinson , Especies Reactivas de Oxígeno , Humanos , Enfermedad de Parkinson/metabolismo , Eje Cerebro-Intestino/fisiología , Especies Reactivas de Oxígeno/metabolismo , Microbioma Gastrointestinal/fisiología , Animales , Encéfalo/metabolismo , Disbiosis/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo
3.
Eur J Pharmacol ; 978: 176804, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38950837

RESUMEN

Neurodegenerative disorders are diseases characterized by progressive degeneration of neurons and associated structures and are a major global issue growing more widespread as the global population's average age increases. Despite several investigations on their etiology, the specific cause of these disorders remains unknown. However, there are few symptomatic therapies to treat these disorders. Polyamines (PAs) (putrescine, spermidine, and spermine) are being studied for their role in neuroprotection, aging and cognitive impairment. They are ubiquitous polycations which have relatively higher concentrations in the brain and possess pleiotropic biochemical activities, including regulation of gene expression, ion channels, mitochondria Ca2+ transport, autophagy induction, programmed cell death, and many more. Their cellular content is tightly regulated, and substantial evidence indicates that their altered levels and metabolism are strongly implicated in aging, stress, cognitive dysfunction, and neurodegenerative disorders. In addition, dietary polyamine supplementation has been reported to induce anti-aging effects, anti-oxidant effects, and improve locomotor abnormalities, and cognitive dysfunction. Thus, restoring the polyamine level is considered a promising pharmacological strategy to counteract neurodegeneration. This review highlights PAs' physiological role and the molecular mechanism underpinning their proposed neuroprotective effect in aging and neurodegenerative disorders.


Asunto(s)
Envejecimiento , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Poliaminas , Humanos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Animales , Poliaminas/metabolismo , Poliaminas/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico
4.
Inflammopharmacology ; 32(3): 1791-1804, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653938

RESUMEN

Huntington's disease (HD) is an inherited, autosomal, neurodegenerative ailment that affects the striatum of the brain. Despite its debilitating effect on its patients, there is no proven cure for HD management as of yet. Neuroinflammation, excitotoxicity, and environmental factors have been reported to influence the regulation of gene expression by modifying epigenetic mechanisms. Aside focusing on the etiology, changes in epigenetic mechanisms have become a crucial factor influencing the interaction between HTT protein and epigenetically transcribed genes involved in neuroinflammation and HD. This review presents relevant literature on epigenetics with special emphasis on neuroinflammation and HD. It summarizes pertinent research on the role of neuroinflammation and post-translational modifications of chromatin, including DNA methylation, histone modification, and miRNAs. To achieve this about 1500 articles were reviewed via databases like PubMed, ScienceDirect, Google Scholar, and Web of Science. They were reduced to 534 using MeSH words like 'epigenetics, neuroinflammation, and HD' coupled with Boolean operators. Results indicated that major contributing factors to the development of HD such as mitochondrial dysfunction, excitotoxicity, neuroinflammation, and apoptosis are affected by epigenetic alterations. However, the association between neuroinflammation-altered epigenetics and the reported transcriptional changes in HD is unknown. Also, the link between epigenetically dysregulated genomic regions and specific DNA sequences suggests the likelihood that transcription factors, chromatin-remodeling proteins, and enzymes that affect gene expression are all disrupted simultaneously. Hence, therapies that target pathogenic pathways in HD, including neuroinflammation, transcriptional dysregulation, triplet instability, vesicle trafficking dysfunction, and protein degradation, need to be developed.


Asunto(s)
Epigénesis Genética , Enfermedad de Huntington , Enfermedades Neuroinflamatorias , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Humanos , Animales , Enfermedades Neuroinflamatorias/genética , Metilación de ADN/genética , Inflamación/genética
5.
Expert Opin Ther Targets ; 27(11): 1159-1172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37971192

RESUMEN

INTRODUCTION: Recent neuroscience breakthroughs have shed light on the sophisticated relationship between calcium channelopathies and movement disorders, exposing a previously undiscovered tale focusing on the Ryanodine Receptor (RyR) and the Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA). Calcium signaling mainly orchestrates neural communication, which regulates synaptic transmission and total network activity. It has been determined that RyR play a significant role in managing neuronal functions, most notably in releasing intracellular calcium from the endoplasmic reticulum. AREAS COVERED: It highlights the involvement of calcium channels such as RyR and SERCA in physiological and pathophysiological conditions. EXPERT OPINION: Links between RyR and SERCA activity dysregulation, aberrant calcium levels, motor and cognitive dysfunction have brought attention to the importance of RyR and SERCA modulation in neurodegenerative disorders. Understanding the obscure function of these proteins will open up new therapeutic possibilities to address the underlying causes of neurodegenerative diseases. The unreported RyR and SERCA narrative broadens the understanding of calcium channelopathies in movement disorders and calls for more research into cutting-edge therapeutic approaches.


Asunto(s)
Canalopatías , Trastornos del Movimiento , Enfermedades Neurodegenerativas , Humanos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Señalización del Calcio , Canalopatías/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Retículo Endoplásmico/metabolismo , Trastornos del Movimiento/metabolismo
6.
J Chem Neuroanat ; 131: 102287, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37172828

RESUMEN

A mutation in the Huntingtin gene causes 'Huntington's disease, which presents as a motor and behavioral impairment. Due to the limited drug therapy for this disease, scientists are constantly searching for newer and alternative drugs that may either retard or prevent the progress of the disease. This study aims to explore the neuroprotective potential of Bacillus Calmette Gaurine (BCG) vaccine against quinolinic acid-induced (QA) neurotoxicity in rats. QA (200 nmol/2 µl, i.s) was injected bilaterally into the rat striatum, after which a single dose of BCG (2 × 10^7, cfu) was given to the rats. Animals were assessed for behavioral parameters on the 14th and 21st days. On the 22nd day, animals were sacrificed, brains were harvested, and striatum was separated to evaluate biochemical, inflammatory, and apoptotic mediators. Histopathological studies were performed using Hematoxyline and Eosin staining to assess neuronal morphology. BCG treatment reversed motor abnormalities, reduced oxidative stress and neuroinflammatory markers, apoptotic mediators and striatal lesions induced by QA treatment. In conclusion, treat' 'ing rats with BCG vaccine (2 × 10^7, cfu) mitigated the quinolinic acid-induced Huntington's disease-like symptoms. Hence, BCG vaccine (2 ×10^7, cfu) could be used as an adjuvant in managing HD.


Asunto(s)
Enfermedad de Huntington , Fármacos Neuroprotectores , Ratas , Animales , Antioxidantes/uso terapéutico , Ratas Wistar , Vacuna BCG/efectos adversos , Ácido Quinolínico/toxicidad , Enfermedad de Huntington/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Cuerpo Estriado , Modelos Animales de Enfermedad
7.
Naunyn Schmiedebergs Arch Pharmacol ; 396(4): 593-605, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36464748

RESUMEN

Artemisinin and its derivatives, since their discovery by professor Tu Youyou in the early 1970s, have been the bedrock for the management of malaria globally. Recent works have implied that they could be used to manage other diseases including neurodegenerative disorders. Neurodegenerative disorders mainly occur in the adult population resulting from a progressive deterioration of neuronal structures. These include Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and Multiple sclerosis (MS), among others. The PI3K/Akt signaling pathway plays a significant role in the central nervous system. It has been investigated extensively for its role in central nervous system physiological processes such as cell survival, autophagy, neuronal proliferation, and synaptic plasticity. Therefore, the modulation of this pathway will be crucial in the management of neurodegenerative disorders. This review seeks to compile most of the research findings on the possible neuroprotective role of artemisinins with special emphasis on their modulatory role on the PI3k/Akt pathway. A literature survey was conducted on PubMed, EBSCO, Web of Science, and EMBASE using the keyword artemisinins, and a total of 10,281 articles were retrieved from 1956 to 2022. Among these, 120 articles were examined using Mesh words like PI3k/Akt, neurodegeneration, and neuroinflammation coupled with boolean operators. Most research revealed that artemisinins could help neurodegenerative disorders by modulating the PI3k/Akt with subsequent inhibition of oxidative stress, neuroinflammation, and apoptosis. This paper illustrates that artemisinins could be repurposed as a neuroprotective agent.


Asunto(s)
Artemisininas , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Enfermedades Neuroinflamatorias , Transducción de Señal , Enfermedades Neurodegenerativas/tratamiento farmacológico , Artemisininas/farmacología , Artemisininas/uso terapéutico
8.
Arch Microbiol ; 205(1): 39, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36567396

RESUMEN

Benzoxazepines constitute a significant class of organic compounds extensively described in the literature. Several derivatives with pharmacological properties have been produced due to the semi-rigid azepine scaffold, which allows for the addition of other heteroatoms. This study investigated the possible antifungal effect and antioxidant activity of 2,3-dihydro-1,5-benzoxazepines. The antifungal effect was investigated using the broth dilution assay, while the antioxidant property was determined using the ABTS and DPPH scavenging tests. The results indicated that the 2,3-dihydro-1,5-benzoxazepine derivatives had antifungal properties and could be working via its fungicidal and biofilm inhibitory properties. It was also realized that it had synergistic effects when administered concomitantly with standard antifungal drugs. The antioxidant effects were high with 2,2-dimethyl-4-[(E)-2-(4-methylphenyl)ethenyl]-2,3-dihydro-1,5-benzoxazepine (1) compared to the other derivatives. It could be concluded that 2,3-dihydro-1,5-benzoxazepines could possess fungicidal and possible antioxidant properties. And hence could serve as new drug leads in discovering novel drugs that could help manage fluconazole-resistant vulvovaginal candidiasis.


Asunto(s)
Candidiasis Vulvovaginal , Fungicidas Industriales , Humanos , Femenino , Antifúngicos/farmacología , Antioxidantes/farmacología , Fluconazol/farmacología , Candidiasis Vulvovaginal/microbiología , Fungicidas Industriales/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana , Candida albicans
9.
Int Immunopharmacol ; 113(Pt A): 109382, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36330915

RESUMEN

Monkeypox is a zoonotic illness caused by the monkeypox virus (MPXV) that has a similar etiology to smallpox. The first case of monkeypox was reported in Western and Central Africa in 1971, and in 2003, there was an outbreak of monkeypox viruses outside Africa. According to the World Health Organization (WHO) and Center for Disease Control and Prevention (CDC), monkeypox is transmitted through direct contact with infected animals or persons exposed to infectious sores, scabs, or body fluids. Also, intimate contact between people during sex, kissing, cuddling, or touching parts of the body can result in the spreading of this disease. The use of the smallpox vaccine against monkeypox has several challenges and hence anti-virals such as cidofovir, brincidofovir, and tecovirimat have been used for the symptomatic relief of patients and reversing the lesion formation on the skin. Despite the recent outbreak of monkeypox most especially in hitherto non-endemic countries, there is still a lack of definitive treatment for monkeypox. In the present review, emphasis was focused on etiopathology, transmission, currently available therapeutic agents, and future targets that could be explored to halt the progression of monkeypox. From our review we can postulate that owing to the lack of a definitive cure to this reemerging disorder, there is a need for general awareness about the transmission as well as to develop appropriate diagnostic procedures, immunizations, and antiviral medication.


Asunto(s)
Mpox , Vacuna contra Viruela , Animales , Mpox/diagnóstico , Mpox/epidemiología , Mpox/tratamiento farmacológico , Monkeypox virus , Cidofovir/uso terapéutico , Antivirales/uso terapéutico
10.
Artículo en Inglés | MEDLINE | ID: mdl-35356250

RESUMEN

The rapid emergence and spread of antimicrobial resistance has become a global public health concern that threatens the effective treatment of infectious diseases. One major approach adopted to overcome antimicrobial resistance is the use of plant extracts individually and/or with combination of antibiotics with plant extracts, which may lead to new ways of treating infectious diseases and essentially representing a potential area for further future investigations. In this study, the antifungal activities of Azadirachta indica leaf and Catharanthus roseus flower extracts against fluconazole-resistant Candida albicans strains (isolated from pregnant women with vulvovaginal candidiasis) and anti-methicillin-resistant Staphylococcus aureus (MRSA) were evaluated by agar well diffusion, microdilution, and biofilm inhibition assays. Subsequently, the determination of the combined antimicrobial activity of the individual plant extracts with (fluconazole and voriconazole) and (ampicillin, tetracycline, and streptomycin) against C. albicans strains and MRSA, respectively, was evaluated by checkerboard microdilution assay. Results from the study showed that the antimicrobial activity of the two plant extracts determined by time-kill kinetics was fungistatic with their MICs ranging from 0.1 to 4 mg/mL. Interestingly, all extracts were proved as good biofilm inhibitors of resistant C. albicans and MRSA from 10.1 to 98.82%. Their combination interaction with fluconazole, voriconazole, ampicillin, tetracycline, and streptomycin ranged from synergy to antagonism as per the parameters used. Overall, these results showed that A. indica leaf and C. roseus flower extracts have significant antifungal property. Furthermore, A. indica leaf and C. roseus flower extracts alone or in combination with fluconazole and voriconazole could provide a promising approach to the management of candidiasis caused by drug-resistant strains as well as their interaction with the antibacterial agents to combat the common infections caused by MRSA.

11.
Artículo en Inglés | MEDLINE | ID: mdl-33488751

RESUMEN

INTRODUCTION: In the management of hypertension (a cardiovascular disease and the leading metabolic risk factor in noncommunicable diseases) with herbal medicines, efficacy and safety are of uttermost concern. This study sought to establish hypotensive, antihypertensive, drug interaction, and safety for use of the aqueous leaf extracts of Annona muricata (AME), Persea americana (PAE), or their combination products (CAPE). Methodology. Systolic and diastolic blood pressure (SBP and DBP), mean arterial blood pressure (MAP), and heart rate (HR) were measured in normotensive Sprague-Dawley rats treated with 50-150 mg/kg of AME, PAE, or CAPE to establish a hypotensive effect. "Combination index" was calculated to establish interaction between AME and PAE. The antihypertensive effect of CAPE was established by measuring SBP, DBP, MAP, and HR in ethanol-sucrose- and epinephrine-induced hypertension. Full blood count, liver and kidney function tests, and urinalysis were determined in ethanol/sucrose-induced hypertension to establish safety for use. RESULTS: AME, PAE, and CAPE significantly (p ≤ 0.001) decreased BP in both normotensive and hypertensive animals. Effects of CAPE 1, CAPE 2, and CAPE 3 were synergistic (combination indices of 0.65 ± 0.07, 0.76 ± 0.09, and 0.87 ± 0.07, respectively). There was a significant decrease (p ≤ 0.01 - 0.001) in SBP and MAP with 100 mg/kg CAPE 1 and 75 mg/kg CAPE 2 treatment in hypertension as well as with nifedipine (p ≤ 0.001) treatment. Epinephrine-induced hypertension in anesthetized cats was significantly and dose-dependently inhibited (p < 0.05 - 0.001) by 25-100 mg/ml CAPE 1 and 37.5-75 mg/ml CAPE 2. CAPE administration had no deleterious effect (p > 0.05) on full blood count, liver and kidney function, and urine composition in hypertensive rats. CONCLUSION: The aqueous leaf extracts of Annona muricata, Persea americana, and their combination products possess antihypertensive properties, with combination products showing synergism and safety with use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA