Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746472

RESUMEN

The regulatory mechanisms underlying the response to pro-inflammatory cytokines during myocarditis are poorly understood. Here, we use iPSC-derived cardiovascular progenitor cells (CVPCs) to model the response to interferon gamma (IFN-γ) during myocarditis. We generate RNA-seq and ATAC-seq for four CVPCs that were treated with IFN-γ and compare them with paired untreated controls. Transcriptional differences after treatment show that IFN-γ initiates an innate immune cell-like response in the vascular cardiac endothelium. IFN-γ treatment also shifts the CVPC transcriptome towards the adult coronary artery and aorta profiles and expands the relative endothelial cell population in all four CVPC lines. Analysis of the accessible chromatin shows that IFN-γ is a potent chromatin remodeler and establishes an IRF-STAT immune-cell like regulatory network. Our findings reveal insights into the endothelial-specific protective mechanisms during myocarditis.

2.
bioRxiv ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38645112

RESUMEN

Most GWAS loci are presumed to affect gene regulation, however, only ∼43% colocalize with expression quantitative trait loci (eQTLs). To address this colocalization gap, we identify eQTLs, chromatin accessibility QTLs (caQTLs), and histone acetylation QTLs (haQTLs) using molecular samples from three early developmental (EDev) tissues. Through colocalization, we annotate 586 GWAS loci for 17 traits by QTL complexity, QTL phenotype, and QTL temporal specificity. We show that GWAS loci are highly enriched for colocalization with complex QTL modules that affect multiple elements (genes and/or peaks). We also demonstrate that caQTLs and haQTLs capture regulatory variations not associated with eQTLs and explain ∼49% of the functionally annotated GWAS loci. Additionally, we show that EDev-unique QTLs are strongly depleted for colocalizing with GWAS loci. By conducting one of the largest multi-omic QTL studies to date, we demonstrate that many GWAS loci exhibit phenotypic complexity and therefore, are missed by traditional eQTL analyses.

3.
Nat Commun ; 15(1): 1664, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395976

RESUMEN

Stem cells exist in vitro in a spectrum of interconvertible pluripotent states. Analyzing hundreds of hiPSCs derived from different individuals, we show the proportions of these pluripotent states vary considerably across lines. We discover 13 gene network modules (GNMs) and 13 regulatory network modules (RNMs), which are highly correlated with each other suggesting that the coordinated co-accessibility of regulatory elements in the RNMs likely underlie the coordinated expression of genes in the GNMs. Epigenetic analyses reveal that regulatory networks underlying self-renewal and pluripotency are more complex than previously realized. Genetic analyses identify thousands of regulatory variants that overlapped predicted transcription factor binding sites and are associated with chromatin accessibility in the hiPSCs. We show that the master regulator of pluripotency, the NANOG-OCT4 Complex, and its associated network are significantly enriched for regulatory variants with large effects, suggesting that they play a role in the varying cellular proportions of pluripotency states between hiPSCs. Our work bins tens of thousands of regulatory elements in hiPSCs into discrete regulatory networks, shows that pluripotency and self-renewal processes have a surprising level of regulatory complexity, and suggests that genetic factors may contribute to cell state transitions in human iPSC lines.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Redes Reguladoras de Genes , Cromatina/genética , Diferenciación Celular/genética , Factor 3 de Transcripción de Unión a Octámeros/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA