Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407131, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935849

RESUMEN

Pancreatic cancer is one of the deadliest cancers worldwide, mainly due to late diagnosis. Therefore, there is an urgent need for novel diagnostic approaches to identify the disease as early as possible. We have developed a diagnostic assay for pancreatic cancer based on the detection of naturally occurring tumor associated autoantibodies against Mucin-1 (MUC1) using engineered glycopeptides on nanoparticle probes. We used a structure-guided approach to develop unnatural glycopeptides as model antigens for tumor-associated MUC1. We designed a collection of 13 glycopeptides to bind either SM3 or 5E5, two monoclonal antibodies with distinct epitopes known to recognize tumor associated MUC1. Glycopeptide binding to SM3 or 5E5 was confirmed by surface plasmon resonance and rationalized by molecular dynamics simulations. These model antigens were conjugated to gold nanoparticles and used in a dot-blot assay to detect autoantibodies in serum samples from pancreatic cancer patients and healthy volunteers. Nanoparticle probes with glycopeptides displaying the SM3 epitope did not have diagnostic potential. Instead, nanoparticle probes displaying glycopeptides with high affinity for 5E5 could discriminate between cancer patients and healthy controls. Remarkably, the best-discriminating probes show significantly better true and false positive rates than the current clinical biomarkers CA19-9 and carcinoembryonic antigen (CEA).

2.
JACS Au ; 4(1): 150-163, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38274250

RESUMEN

Mucin-1 (MUC1) glycopeptides are exceptional candidates for potential cancer vaccines. However, their autoantigenic nature often results in a weak immune response. To overcome this drawback, we carefully engineered synthetic antigens with precise chemical modifications. To be effective and stimulate an anti-MUC1 response, artificial antigens must mimic the conformational dynamics of natural antigens in solution and have an equivalent or higher binding affinity to anti-MUC1 antibodies than their natural counterparts. As a proof of concept, we have developed a glycopeptide that contains noncanonical amino acid (2S,3R)-3-hydroxynorvaline. The unnatural antigen fulfills these two properties and effectively mimics the threonine-derived antigen. On the one hand, conformational analysis in water shows that this surrogate explores a landscape similar to that of the natural variant. On the other hand, the presence of an additional methylene group in the side chain of this analog compared to the threonine residue enhances a CH/π interaction in the antigen/antibody complex. Despite an enthalpy-entropy balance, this synthetic glycopeptide has a binding affinity slightly higher than that of its natural counterpart. When conjugated with gold nanoparticles, the vaccine candidate stimulates the formation of specific anti-MUC1 IgG antibodies in mice and shows efficacy comparable to that of the natural derivative. The antibodies also exhibit cross-reactivity to selectively target, for example, human breast cancer cells. This investigation relied on numerous analytical (e.g., NMR spectroscopy and X-ray crystallography) and biophysical techniques and molecular dynamics simulations to characterize the antigen-antibody interactions. This workflow streamlines the synthetic process, saves time, and reduces the need for extensive, animal-intensive immunization procedures. These advances underscore the promise of structure-based rational design in the advance of cancer vaccine development.

3.
Curr Med Chem ; 29(7): 1258-1270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34375180

RESUMEN

Immunotherapy, alone or in combination with other therapies, is widely used against cancer. Glycoprotein Mucin 1 (MUC1), which is overexpressed and aberrantly glycosylated in tumor cells, is one of the most promising candidates to engineer new cancer vaccines. In this context, the development of stable antigens that can elicit a robust immune response is mandatory. Here, we describe the design and in vivo biological evaluation of three vaccine candidates based on MUC1 glycopeptides that comprise unnatural elements in their structure. By placing the Tn antigen (GalNAcα-O-Ser/Thr) at the center of the design, the chemical modifications include changes to the peptide backbone, glycosidic linkage, and carbohydrate level. Significantly, the three vaccines elicit robust immune responses in mice and produce antibodies that can be recognized by several human cancer cells. In all cases, a link was established between the conformational changes induced by the new elements in the antigen presentation and the immune response induced in mice. According to our data, the development of effective MUC1-based vaccines should use surrogates that mimic the conformational space of aberrantly glycosylated MUC1 glycopeptides found in tumors.


Asunto(s)
Vacunas contra el Cáncer , Animales , Anticuerpos , Presentación de Antígeno , Vacunas contra el Cáncer/uso terapéutico , Glicopéptidos/química , Glicosilación , Ratones
5.
Chemistry ; 24(31): 7991-8000, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29603441

RESUMEN

A series of fluorescent d-cysteines (Cys) has been synthesized and their optical properties were studied. The key synthetic step is the highly diastereoselective 1,4-conjugate addition of aryl thiols to a chiral bicyclic dehydroalanine recently developed by our group. This reaction is fast at room temperature and proceeds with total chemo- and stereoselectivity. The Michael adducts were easily transformed into the corresponding amino acids to study their optical properties and, in some selected cases, into the corresponding N-Fmoc-d-cysteine derivatives to be used in solid-phase peptide synthesis (SPPS). To further demonstrate the utility of these non-natural Cys-derived fluorescent amino acids, the coumaryl and dansyl derivatives were incorporated into cell-penetrating peptide sequences through standard SPPS and their optical properties were studied in different cell lines. The internalization of these fluorescent peptides was monitored by fluorescence microscopy.


Asunto(s)
Péptidos de Penetración Celular/síntesis química , Cisteína/química , Colorantes Fluorescentes/síntesis química , Supervivencia Celular , Péptidos de Penetración Celular/metabolismo , Colorantes Fluorescentes/metabolismo , Células HeLa , Humanos , Imagen Óptica/métodos , Técnicas de Síntesis en Fase Sólida , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA