Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Glia ; 72(8): 1374-1391, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38587131

RESUMEN

Oligodendrocytes and astrocytes are metabolically coupled to neuronal compartments. Pyruvate and lactate can shuttle between glial cells and axons via monocarboxylate transporters. However, lactate can only be synthesized or used in metabolic reactions with the help of lactate dehydrogenase (LDH), a tetramer of LDHA and LDHB subunits in varying compositions. Here we show that mice with a cell type-specific disruption of both Ldha and Ldhb genes in oligodendrocytes lack a pathological phenotype that would be indicative of oligodendroglial dysfunctions or lack of axonal metabolic support. Indeed, when combining immunohistochemical, electron microscopical, and in situ hybridization analyses in adult mice, we found that the vast majority of mature oligodendrocytes lack detectable expression of LDH. Even in neurodegenerative disease models and in mice under metabolic stress LDH was not increased. In contrast, at early development and in the remyelinating brain, LDHA was readily detectable in immature oligodendrocytes. Interestingly, by immunoelectron microscopy LDHA was particularly enriched at gap junctions formed between adjacent astrocytes and at junctions between astrocytes and oligodendrocytes. Our data suggest that oligodendrocytes metabolize lactate during development and remyelination. In contrast, for metabolic support of axons mature oligodendrocytes may export their own glycolysis products as pyruvate rather than lactate. Lacking LDH, these oligodendrocytes can also "funnel" lactate through their "myelinic" channels between gap junction-coupled astrocytes and axons without metabolizing it. We suggest a working model, in which the unequal cellular distribution of LDH in white matter tracts facilitates a rapid and efficient transport of glycolysis products among glial and axonal compartments.


Asunto(s)
Axones , Glucólisis , L-Lactato Deshidrogenasa , Oligodendroglía , Animales , Oligodendroglía/metabolismo , Axones/metabolismo , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Glucólisis/fisiología , Ratones , Regulación hacia Abajo/fisiología , Ratones Endogámicos C57BL , Lactato Deshidrogenasa 5/metabolismo , Astrocitos/metabolismo , Astrocitos/ultraestructura , Ratones Transgénicos , Isoenzimas/metabolismo , Isoenzimas/genética , Uniones Comunicantes/metabolismo , Uniones Comunicantes/ultraestructura , Ratones Noqueados
2.
Curr Opin Neurobiol ; 83: 102782, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37703600

RESUMEN

Oligodendrocytes are best known for wrapping myelin, a unique specialization that enables energy-efficient and fast axonal impulse propagation in white matter tracts and fibers of the cortical circuitry. However, myelinating oligodendrocytes have additional metabolic functions that are only gradually understood, including the regulated release of pyruvate/lactate and extracellular vesicles, both of which are in support of the axonal energy balance. The axon-supportive functions of glial cells are older than myelin in nervous system evolution and implicate oligodendrocyte dysfunction and loss of myelin integrity as a risk factor for progressive neurodegeneration in brain diseases.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Vaina de Mielina/metabolismo , Oligodendroglía/fisiología , Encéfalo/metabolismo , Axones/fisiología , Metabolismo Energético
3.
Elife ; 62017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28470148

RESUMEN

Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific Pex5 mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy. In search for a molecular mechanism, we revealed enhanced abundance and internodal expression of axonal membrane proteins normally restricted to juxtaparanodal lipid-rafts. Gangliosides were altered and enriched within an expanded lysosomal compartment of paranodal loops. We revealed the same pathological features in a mouse model of human Adrenomyeloneuropathy, preceding disease-onset by one year. Thus, peroxisomal dysfunction causes secondary failure of local lysosomes, thereby impairing the turnover of gangliosides in myelin. This reveals a new aspect of axon-glia interactions, with Schwann cell lipid metabolism regulating the anchorage of juxtaparanodal Kv1-channels.


Asunto(s)
Axones/enzimología , Metabolismo de los Lípidos , Lisosomas/metabolismo , Neuroglía/metabolismo , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Peroxisomas/metabolismo , Canales de Potasio con Entrada de Voltaje/análisis , Adrenoleucodistrofia/patología , Animales , Axones/ultraestructura , Modelos Animales de Enfermedad , Humanos , Ratones , Microscopía Electrónica , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA