Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Food Prot ; 86(4): 100066, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37005036

RESUMEN

Rapid detection of foodborne pathogens is essential to preventing foodborne illness outbreaks. Before detection can occur, however, it is often necessary to extract and concentrate bacteria. Conventional methods such as centrifugation, filtration, and immunomagnetic separation can often be time-consuming, ineffective, or costly when working with complex food matrices. This work used cost-effective glycan-coated magnetic nanoparticles (MNPs) for rapid concentration of Escherichia coli O157, Listeria monocytogenes, and Staphylococcus aureus. Glycan-coated MNPs were used to concentrate bacteria from both buffer solution and food matrices while examining the effect of factors including solution pH, bacterial concentration, and target bacterial species. In both pH 7 and reduced pH experiments, successful extraction of bacterial cells occurred in all food matrices and bacteria tested. In neutral pH buffer solution, bacteria were concentrated to 4.55 ± 1.17, 31.68 ± 6.10 and 64.27 ± 16.78 times their initial concentration (mean ± standard deviation) for E. coli, L. monocytogenes and S. aureus, respectively. Successful bacterial concentration occurred in several food matrices, including S. aureus in milk (pH 6), L. monocytogenes in sausage (pH 7), and E. coli O157 in flour (pH 7). The insights gained may facilitate future applications of glycan-coated MNPs to extract foodborne pathogens.


Asunto(s)
Escherichia coli O157 , Listeria monocytogenes , Nanopartículas de Magnetita , Microbiología de Alimentos , Recuento de Colonia Microbiana , Staphylococcus aureus , Bacterias , Polisacáridos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA