Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
MethodsX ; 7: 100977, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670805

RESUMEN

The macro "PollenCounter" in ImageJ was initially developed to assess pollen viability in grapevine. We set out to see if PollenCounter could be used to assess pollen number and viability in tomatoes.•We tested different optimization scenarios by adjusting the pollen size (100-900, 200-900 pixel2) and circularity of pollen grains (0.4-1, 0.5-1, and 0.6-1) on 31 microscopic images of stained tomato pollen. Both total pollen number and proportion of viable pollen were positively and significantly correlated with the outputs from manual counting. The scenario with 100-900 pixel2 pollen size and 0.4-1 circularity had the highest association for pollen number (r = 0.99) and pollen viability (r = 0.86). PollenCounter is 32-fold faster than manual counting.•We added a command to the macro to automatically save the outputs containing the number of total and viable pollen, avoiding transcription errors inherent to manual counting.•We successfully applied the optimized PollenCounter to discriminate tomato genotypes based on pollen number and pollen viability under heat stress. Our results show that PollenCounter, as an open-access macro, can be customized and improved to meet users' needs. The use of PollenCounter can save time and money in pollen quality assessment. We outline the steps to optimize the macro for other samples or crop species. The optimized macro could allow efficient screening of a large germplasm collection for pollen thermo-tolerance and selection of best thermo-tolerant individuals in breeding programs.

2.
Front Plant Sci ; 11: 444, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431718

RESUMEN

Cowpeas provide food and income for many small-holder farmers in Africa. Cowpea grains contain substantial quantities of protein, carbohydrates, vitamins, and fiber. In areas where subsistence farming is practiced, cowpea's protein is cheaper than that obtained from other sources such as fish, meat, poultry or dairy products and combines well with cereal grains in diets. However, long-cooking times, typical of many grain legumes, is a major limitation to the utilization of cowpeas especially among the low-income and growing middle-income population of Africa. Long periods of cooking cowpeas lead to loss of nutrients, loss of useful time and increased greenhouse gas emission through increased burning of firewood. Fast-cooking cowpeas has the potential to deliver highly nutritious food to the hungry within shorter periods, encourage less use of firewood, improve gender equity, increase the consumption of cowpeas, trigger an increase in demand for cowpeas and thus incentivize cowpea production by smallholder farmers in Sub-Saharan Africa. In this study, the inheritance of storage-induced cooking time in cowpeas was investigated. Two sets of bi-parental crosses were conducted involving three cowpea genotypes: CRI-11(1)-1, C9P(B) and TVu7687. Generation means from six generations were used to determine the phenotypic and genotypic variances and coefficients of variation. Broad and narrow sense heritabilities and genetic advance percentage of mean were estimated. Generation mean analysis showed that additive, dominant, additive-additive, additive-dominant, and dominant-dominant gene actions were significant (p < 0.001). Fast-cooking trait was dominant over the long-cooking trait. Broad sense heritability for crosses C9P(B) × CRI-11(1)-1 and TVu7687 × CRI-11(1)-1 were 0.94 and 0.99 respectively while narrow sense heritabilities were 0.84 and 0.88 respectively. Genetic advances were 27.09 and 40.40 respectively. High narrow-sense heritabilities and moderate genetic advance for the fast-cooking trait indicated the presence of additive genes in the trait and the possibility of introgressing the trait into farmer-preferred varieties using conventional selection methods. However, due to significant epistatic gene effects observed, effective selection for fast-cooking trait would be appropriate at advanced generations.

3.
Carbon Balance Manag ; 13(1): 14, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30191432

RESUMEN

BACKGROUND: Forests play an important role in mitigating global climate change by capturing and sequestering atmospheric carbon. Quantitative estimation of the temporal and spatial pattern of carbon storage in forest ecosystems is critical for formulating forest management policies to combat climate change. This study explored the effects of land cover change on carbon stock dynamics in the Wujig Mahgo Waren forest, a dry Afromontane forest that covers an area of 17,000 ha in northern Ethiopia. RESULTS: The total carbon stocks of the Wujig Mahgo Waren forest ecosystems estimated using a multi-disciplinary approach that combined remote sensing with a ground survey were 1951, 1999, and 1955 GgC in 1985, 2000 and 2016 years respectively. The mean carbon stocks in the dense forests, open forests, grasslands, cultivated lands and bare lands were estimated at 181.78 ± 27.06, 104.83 ± 12.35, 108.77 ± 6.77, 76.54 ± 7.84 and 83.11 ± 8.53 MgC ha-1 respectively. The aboveground vegetation parameters (tree density, DBH and height) explain 59% of the variance in soil organic carbon. CONCLUSIONS: The obtained estimates of mean carbon stocks in ecosystems representing the major land cover types are of importance in the development of forest management plan aimed at enhancing mitigation potential of dry Afromontane forests in northern Ethiopia.

4.
J Ethnopharmacol ; 172: 297-311, 2015 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-26099634

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Buruli ulcer (BU) is the third most common mycobacterial infection in the world, after tuberculosis and leprosy and has recently been recognized as an important emerging disease. This disease is common in West Africa where more than 99% of the burden is felt and where most affected people live in remote areas with traditional medicine as primary or only option. Reports indicate that the ethnopharmacological control approach of the disease in such settings has shown promise. However, no or very few compilations of traditional knowledge in using medicinal plants to treat BU have been attempted so far. This review aimed to record medicinal plants used traditionally against BU in three countries in West Africa: Ivory Coast, Ghana and Benin and for which ethnopharmacological knowledge supported by pharmacological investigations has been reported. The information recorded in this review will support further pharmacological research to develop appropriate drugs for a better BU control. MATERIAL AND METHODS: A systematic review of the literature on ethnobotanical use and anti-BU activity of plants reported for BU treatment was performed. The approach consisted to search several resources, including Technical Reports, Books, Theses, Conference proceedings, web-based scientific databases such as publications on PubMed, Science direct, Springer, ACS, Scielo, PROTA, Google and Google scholar reporting ethnobotanical surveys and screening of natural products against Mycobacterium ulcerans. This study was limited to papers and documents published either in English or French reporting ethnopharmacological knowledge in BU treatment or pharmacological potency in vitro. This review covered the available literature up to December 2014. RESULTS: The majority of reports originated from the three most affected West African countries (Cote d'Ivoire, Ghana and Benin). Though, 98 plant species belonging to 48 families have been identified as having anti-BU use, many have received no or little attention. Most of the pharmacological studies were performed only on 54 species. To a lesser extent, ethnopharmacological knowledge was validated in vitro for only 13 species. Of those, seven species including Ricinus comminus, Cyperus cyperoides (cited as Mariscus alternifolius), Nicotiana tabacum, Mangifera indica, Solanum rugosum, Carica papaya, and Moringa oleifera demonstrated efficacy in hospitalised BU patients. Four isolated and characterized compounds were reported to have moderate bioactivity in vitro against M. ulcerans. CONCLUSIONS: This review compiles for the first time ethnopharmacologically useful plants against BU. The phamacological potential of 13 of them has been demonstrated in vitro and support BU evidence-based traditional medicines. In addition, 7 species showed activity in BU patients and have emerged as a promising source of the traditional medicine for treatment of BU. Yet, further safety and efficacy study should be initiated prior any approval as alternative therapy. Overall, a huge gap in knowledge appeared, suggesting further well-planned and detailed investigations of the in vitro, in vivo, and safety properties of the claimed anti-BU plants. Therefore, plants with medicinal potential should be scrutinized for biologically active compounds, using bioassay-guided fractionation approach to provide new insights to find novel therapeutics for BU control.


Asunto(s)
Úlcera de Buruli/tratamiento farmacológico , Preparaciones de Plantas/uso terapéutico , Plantas Medicinales/química , África Occidental , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Úlcera de Buruli/microbiología , Etnofarmacología , Humanos , Mycobacterium ulcerans/efectos de los fármacos , Mycobacterium ulcerans/aislamiento & purificación , Preparaciones de Plantas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA