Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sensors (Basel) ; 23(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139637

RESUMEN

Microelectromechanical systems (MEMS)-based filter with microchannels enables the removal of various microorganisms, including viruses and bacteria, from fluids. Membranes with porous channels can be used as filtration interfaces in MEMS hemofilters or mini-dialyzers. The main problems associated with the filtration process are optimization of membrane geometry and fouling. A nanoporous aluminum oxide membrane was fabricated using an optimized two-step anodization process. Computational strength modeling and analysis of the membrane with specified parameters were performed using the ANSYS structural module. A fuzzy simulation was performed for the numerical analysis of flux through the membrane. The membrane was then incorporated with the prototype for successive filtration. The fluid flux and permeation analysis of the filtration process have been studied. Scanning electron microscope (SEM) micrographs of membranes have been obtained before and after the filtration cycles. The SEM results indicate membrane fouling after multiple cycles, and thus the flux is affected. This type of fabricated membrane and setup are suitable for the separation and purification of various fluids. However, after several filtration cycles, the membrane was degraded. It requires a prolonged chemical cleaning. High-density water has been used for filtration purposes, so this MEMS-based filter can also be used as a mini-dialyzer and hemofilter in various applications for filtration. Such a demonstration also opens up a new strategy for maximizing filtration efficiency and reducing energy costs for the filtration process by using a layered membrane setup.

2.
Membranes (Basel) ; 13(10)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37887997

RESUMEN

Microfluidic devices have gained subsequent attention due to their controlled manipulation of fluid for various biomedical applications. These devices can be used to study the behavior of fluid under several micrometer ranges within the channel. The major applications are the filtration of fluid, blood filtration and bio-medical analysis. For the filtration of water, as well as other liquids, the micro-filtration based microfluidic devices are considered as potential candidates to fulfill the desired conditions and requirements. The micro pore membrane can be designed and fabricated in such a way that it maximizes the removal of impurities from fluid. The low-cost micro-filtration method has been reported to provide clean fluid for biomedical applications and other purposes. In the work, anodic-aluminum-oxide-based membranes have been fabricated with different pore sizes ranging from 70 to 500 nm. A soft computing technique like fuzzy logic has been used to estimate the filtration parameters. Then, the finite-element-based analysis system software has been used to study the fluid flow through the double membrane. Then, filtration is performed by using a dual membrane and the clogging of the membrane has been studied after different filtration cycles using characterization like a scanning electron microscope. The filtration has been done to purify the contaminated fluid which has impurities like bacteria and protozoans. The membranes have been tested after each cycle to verify the results. The decrease in permeance with respect to the increase in the velocity of the fluid and the permeate volume per unit clearly depicts the removal of containments from the fluid after four and eight cycles of filtration. The results clearly show that the filtration efficiency can be improved by increasing the number of cycles and adding a dual membrane in the micro-fluidic device. The results show the potential of dual anodic aluminum oxide membranes for the effective filtration of fluids for biomedical applications, thereby offering a promising solution to address current challenges.

3.
Nanomaterials (Basel) ; 12(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36558257

RESUMEN

The internet of medical things (IoMT) is used for the acquisition, processing, transmission, and storage of medical data of patients. The medical information of each patient can be monitored by hospitals, family members, or medical centers, providing real-time data on the health condition of patients. However, the IoMT requires monitoring healthcare devices with features such as being lightweight, having a long lifetime, wearability, flexibility, safe behavior, and a stable electrical performance. For the continuous monitoring of the medical signals of patients, these devices need energy sources with a long lifetime and stable response. For this challenge, conventional batteries have disadvantages due to their limited-service time, considerable weight, and toxic materials. A replacement alternative to conventional batteries can be achieved for piezoelectric and triboelectric nanogenerators. These nanogenerators can convert green energy from various environmental sources (e.g., biomechanical energy, wind, and mechanical vibrations) into electrical energy. Generally, these nanogenerators have simple transduction mechanisms, uncomplicated manufacturing processes, are lightweight, have a long lifetime, and provide high output electrical performance. Thus, the piezoelectric and triboelectric nanogenerators could power future medical devices that monitor and process vital signs of patients. Herein, we review the working principle, materials, fabrication processes, and signal processing components of piezoelectric and triboelectric nanogenerators with potential medical applications. In addition, we discuss the main components and output electrical performance of various nanogenerators applied to the medical sector. Finally, the challenges and perspectives of the design, materials and fabrication process, signal processing, and reliability of nanogenerators are included.

4.
Polymers (Basel) ; 13(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34641237

RESUMEN

Understanding the structural organization of chromatin is essential to comprehend the gene functions. The chromatin organization changes in the cell cycle, and it conforms to various compaction levels. We investigated a chromatin solenoid model with nucleosomes shaped as cylindrical units arranged in a helical array. The solenoid with spherical-shaped nucleosomes was also modeled. The changes in chiral structural parameters of solenoid induced different compaction levels of chromatin fiber. We calculated the angle-resolved scattering of circularly polarized light to probe the changes in the organization of chromatin fiber in response to the changes in its chiral parameters. The electromagnetic scattering calculations were performed using discrete dipole approximation (DDA). In the chromatin structure, nucleosomes have internal interactions that affect chromatin compaction. The merit of performing computations with DDA is that it takes into account the internal interactions. We demonstrated sensitivity of the scattering signal's angular behavior to the changes in these chiral parameters: pitch, radius, the handedness of solenoid, number of solenoid turns, the orientation of solenoid, the orientation of nucleosomes, number of nucleosomes, and shape of nucleosomes. These scattering calculations can potentially benefit applying a label-free polarized-light-based approach to characterize chromatin DNA and chiral polymers at the nanoscale level.

5.
Sensors (Basel) ; 20(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630055

RESUMEN

The demand of devices for safe mobility of blind people is increasing with advancement in wireless communication. Artificial intelligent devices with multiple input and output methods are used for reliable data estimation based on maximum probability. A model of a smart home for safe and robust mobility of blind people has been proposed. Fuzzy logic has been used for simulation. Outputs from the internet of things (IoT) devices comprising sensors and bluetooth are taken as input of the fuzzy controller. Rules have been developed based on the conditions and requirements of the blind person to generate decisions as output. These outputs are communicated through IoT devices to assist the blind person or user for safe movement. The proposed system provides the user with easy navigation and obstacle avoidance.


Asunto(s)
Planificación Ambiental , Lógica Difusa , Vivienda , Internet de las Cosas , Personas con Daño Visual , Inteligencia Artificial , Simulación por Computador , Humanos
6.
Sensors (Basel) ; 20(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679688

RESUMEN

The expedient way for the development of microelectromechanical systems (MEMS) based devices are based on two key steps. First, perform the simulation for the optimization of various parameters by using different simulation tools that lead to cost reduction. Second, develop the devices with accurate fabrication steps using optimized parameters. Here, authors have performed a piezoelectric analysis of an array of zinc oxide (ZnO) nanostructures that have been created on both sides of aluminum sheets. Various quantities like swerve, stress, strain, electric flux, energy distribution, and electric potential have been studied during the piezo analysis. Then actual controlled growth of ZnO nanorods (NRs) arrays was done on both sides of the etched aluminum rod at low-temperature using the chemical bath deposition (CBD) method for the development of a MEMS energy harvester. Micro creaks on the substrate acted as an alternative to the seed layer. The testing was performed by applying ambient range force on the nanostructure. It was found that the voltage range on topside was 0.59 to 0.62 mV, and the bottom side was 0.52 to 0.55 mV. These kinds of devices are useful in low power micro-devices, nanoelectromechanical systems, and smart wearable systems.

7.
Sensors (Basel) ; 20(5)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121185

RESUMEN

With the advent of cloud computing and wireless sensor networks, the number of cyberattacks has rapidly increased. Therefore, the proportionate security of networks has become a challenge for organizations. Information security advisors of organizations face difficult and complex decisions in the evaluation and selection of information security controls that permit the defense of their resources and assets. Information security controls must be selected based on an appropriate level of security. However, their selection needs intensive investigation regarding vulnerabilities, risks, and threats prevailing in the organization as well as consideration of the implementation, mitigation, and budgetary constraints of the organization. The goal of this paper was to improve the information security control analysis method by proposing a formalized approach, i.e., fuzzy Analytical Hierarchy Process (AHP). This approach was used to prioritize and select the most relevant set of information security controls to satisfy the information security requirements of an organization. We argue that the prioritization of the information security controls using fuzzy AHP leads to an efficient and cost-effective assessment and evaluation of information security controls for an organization in order to select the most appropriate ones. The proposed formalized approach and prioritization processes are based on International Organization for Standardization and the International Electrotechnical Commission (ISO/IEC) 27001:2013. But in practice, organizations may apply this approach to any information security baseline manual.

8.
PeerJ ; 7: e7326, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31388470

RESUMEN

Chemical immobilisation is an integral component for the conservation of wild animals and can be stressful if proper protocols are not administered. References on the immobilisation of Arabian striped hyaena (Hyaena hyaena sultana) are scarce. The current study was designed to evaluate the physiological and clinical responses of Arabian striped hyaena, immobilised with ketamine-medetomidine (KM) and ketamine-xylazine (KX); and to compare immobilisation effectiveness of the two combinations in a cross-sectional clinical study. A total of 15 (six males, nine females) (semi-) captive and adult Arabian striped hyaena with an average weight of 31.39 ± 0.36 kg were immobilised 50 times for annual vaccination and translocation purposes from January 2014 till March 2018 on Sir Bani Yas Island, United Arab Emirates. A total of 34 immobilisations were executed with (Mean ± SE) 2.27 ± 0.044 mg/kg ketamine and 0.04 ± 0.001 mg/kg medetomidine; while 16 with 4.95 ± 0.115 mg/kg ketamine and 0.99 ± 0.023 mg/kg xylazine. The drugs were remotely delivered intramuscular. The evaluation of physiological and clinical parameters included monitoring of vital signs through pulse oximetry, blood gas analysis of arterial blood through Istat blood gas analyser, and blood biochemistry and haematology. The quality of induction, anaesthesia and recovery was also assessed. Atipamezole (0.21 ± 0.003 mg/kg) was used to antagonise the effects of KM and 0.09 ± 0.003 mg/kg atipamezole or by 0.23 ± 0.006 mg/kg yohimbine for KX. Data were analysed using the general linear model and inferential statistics. KM was more effective in induction (scores; KM = 1.41 ± 0.10; KX = 1.31 ± 0.12), anaesthesia (KM = 1.00 ± 0.00; KX = 2.0 ± 0.0) and recovery (KM = 1.76 ± 0.15; KX = 2.69 ± 0.12) phases as compared to KX. There was a significant difference (P < 0.05) amongst the two combinations for anaesthesia time (KM = 59.5 ± 2.41; KX = 49.25 ± 1.31 min.), time to stand after reversal (KM = 4.91 ± 0.60; KX = 10.38 ± 1.48 min.) and full loss of the signs of anaesthetics (KM = 12.32 ± 1.37; KX = 21.25 ± 2.16 min.) along with rectal temperature (KM = 37.58 ± 0.29; KX = 36.00 ± 0.68 °C), pulse rate (KM = 50.46 ± 1.90; KX = 61.14 ± 2.79 beats/min), respiration rate (KM = 29.44 ± 0.99; KX = 23.80 ± 1.57 breaths/min.) and partial pressure of oxygen (KM = 89.59 ± 1.34; KX = 82.06 ± 3.92%). The blood oxygen saturation by oximeter indicated hypoxaemia in KX (82.06 ± 3.92), supported by the data from blood gas analyser. KM combination was more suitable for the immobilisation of Arabian striped hyaena, providing a better quality of induction, anaesthesia and recovery compared to KX. However, we strongly suggest further investigation to see the effects of oxygen supplementation for the compensation of hypoxaemia.

9.
Micromachines (Basel) ; 9(2)2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30393335

RESUMEN

Approximately 26% of adult people, mostly females, are affected by varicose veins in old age. It is a common reason for distress, loss of efficiency, and worsening living conditions. Several traditional treatment techniques (sclerotherapy and foam sclerotherapy of large veins, laser surgeries and radiofrequency ablation, vein ligation and stripping, ambulatory phlebectomy, and endoscopic vein surgery) have failed to handle this disease effectively. Herein, authors have presented an alternative varicose vein implant method-the descending sinusoidal microchannel (DSMC). DSMC was simulated by Fuzzy logic MATLAB (The MathWorks, Natick, MA, USA) and ANSYS (ANSYS 18.2, perpetual license purchased by Ibadat Education Trust, The University of Lahore, Pakistan) with real and actual conditions. After simulations of DSMC, fabrication and testing were performed. The silver DSMC was manufactured by utilizing a micromachining procedure. The length, width, and depth of the silver substrate were 51 mm, 25 mm, and 1.1 mm, respectively. The measurements of the DSMC channel in the silver wafer substrate were 0.9 mm in width and 0.9 mm in depth. The three descending curves of the DSMC were 7 mm, 6 mm, and 5 mm in height. For pressure, actual conditions were carefully taken as 1.0 kPa to 1.5 kPa for varicose veins. For velocity, actual conditions were carefully taken as 0.02 m/s to 0.07 m/s for these veins. These are real and standard values used in simulations and experiments. At Reynolds number 323, the flow rate and velocity were determined as 1001.0 (0.1 nL/s), 11.4 cm/s and 1015.3 (0.1 nL/s), 12.19 cm/s by MATLAB (The MathWorks, Natick, MA, USA) and ANSYS simulations, respectively. The flow rate and velocity were determined to be 995.3 (0.1 nL/s) and 12.2 cm/s, respectively, at the same Reynolds number (323) in the experiment. Moreover, the Dean number was also calculated to observe Dean vortices. All simulated and experimental results were in close agreement. Consequently, DSMC can be implanted in varicose veins as a new treatment to preserve excellent blood flow in human legs from the original place to avoid tissue damage and other problems.

10.
Micromachines (Basel) ; 8(9)2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30400469

RESUMEN

Bioengineered veins can benefit humans needing bypass surgery, dialysis, and now, in the treatment of varicose veins. The implant of this vein in varicose veins has significant advantages over the conventional treatment methods. Deep vein thrombosis (DVT), vein patch repair, pulmonary embolus, and tissue-damaging problems can be solved with this implant. Here, the authors have proposed biomedical microdevices as an alternative for varicose veins. MATLAB and ANSYS Fluent have been used for simulations of blood flow for bioengineered veins. The silver based microchannel has been fabricated by using a micromachining process. The dimensions of the silver substrates are 51 mm, 25 mm, and 1.1 mm, in length, width, and depth respectively. The dimensions of microchannels grooved in the substrates are 0.9 mm in width and depth. The boundary conditions for pressure and velocity were considered, from 1.0 kPa to 1.50 kPa, and 0.02 m/s to 0.07 m/s, respectively. These are the actual values of pressure and velocity in varicose veins. The flow rate of 5.843 (0.1 nL/s) and velocity of 5.843 cm/s were determined at Reynolds number 164.88 in experimental testing. The graphs and results from simulations and experiments are in close agreement. These microchannels can be inserted into varicose veins as a replacement to maintain the excellent blood flow in human legs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA