Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39071446

RESUMEN

Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) is a new approach for ex vivo genome editing of primary human cells. PERC uses a single amphiphilic peptide reagent to mediate intracellular delivery of the same pre-formed CRISPR ribonucleoprotein enzymes that are broadly used in research and therapeutics, resulting in high-efficiency editing of stimulated immune cells and cultured hematopoietic stem and progenitor cells (HSPCs). PERC facilitates nuclease-mediated gene knockout, precise transgene knock-in, and base editing. PERC involves mixing the CRISPR ribonucleoprotein enzyme with peptide and then incubating the formulation with cultured cells. For efficient transgene knock-in, adeno-associated virus (AAV) bearing homology-directed repair template DNA may be included. In contrast to electroporation, PERC is appealing as it requires no dedicated hardware and has less impact on cell phenotype and viability. Due to the gentle nature of PERC, delivery can be performed multiple times without substantial impact to cell health or phenotype. Here we report methods for improved PERC-mediated editing of T cells as well as novel methods for PERC-mediated editing of HSPCs, including knockout and precise knock-in. Editing efficiencies can surpass 90% using either Cas9 or Cas12a in primary T cells or HSPCs. Because PERC calls for only three readily available reagents - protein, RNA, and peptide - and does not require dedicated hardware for any step, PERC demands no special expertise and is exceptionally straightforward to adopt. The inherent compatibility of PERC with established cell engineering pipelines makes this approach appealing for rapid deployment in research and clinical settings.

2.
Front Microbiol ; 12: 669024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054778

RESUMEN

Bacterial microcompartments (BMCs) are protein-based organelles that expand the metabolic potential of many bacteria by sequestering segments of enzymatic pathways in a selectively permeable protein shell. Sixty-eight different types/subtypes of BMCs have been bioinformatically identified based on the encapsulated enzymes and shell proteins encoded in genomic loci. BMCs are found across bacterial phyla. The organisms that contain them, rather than strictly correlating with specific lineages, tend to reflect the metabolic landscape of the environmental niches they occupy. From our recent comprehensive bioinformatic survey of BMCs found in genome sequence data, we find many in members of the human microbiome. Here we survey the distribution of BMCs in the different biotopes of the human body. Given their amenability to be horizontally transferred and bioengineered they hold promise as metabolic modules that could be used to probiotically alter microbiomes or treat dysbiosis.

3.
Virology ; 534: 45-53, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31176063

RESUMEN

Tailed dsDNA bacteriophages and herpesviruses form capsids using coat proteins that have the HK97 fold. In these viruses, the coat proteins first assemble into procapsids, which subsequently mature during DNA packaging. Generally interactions between the coat protein E-loop of one subunit and the P-domain of an adjacent subunit help stabilize both capsomers and capsids. Based on a recent 3.3 Šcryo-EM structure of the bacteriophage P22 virion, E-loop amino acids E52, E59 and E72 were suggested to stabilize the capsid through intra-capsomer salt bridges with the P-domain residues R102, R109 and K118. The glutamic acid residues were each mutated to alanine to test this hypothesis. The substitutions resulted in a WT phenotype and did not destabilize capsids; rather, the alanine substituted coat proteins increased the stability of procapsids and virions. These results indicate that different types of interactions must be used between the E-loop and P-domain to stabilize phage P22 procapsids and virions.


Asunto(s)
Bacteriófago P22/metabolismo , Proteínas de la Cápside/química , Cápside/química , Bacteriófago P22/química , Bacteriófago P22/genética , Bacteriófago P22/ultraestructura , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Modelos Moleculares , Dominios Proteicos , Estabilidad Proteica , Virión/química , Virión/genética , Virión/metabolismo
4.
J Virol ; 93(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31068429

RESUMEN

Double-stranded DNA (dsDNA) tailed phages and herpesviruses assemble their capsids using coat proteins that have the ubiquitous HK97 fold. Though this fold is common, we do not have a thorough understanding of the different ways viruses adapt it to maintain stability in various environments. The HK97-fold E-loop, which connects adjacent subunits at the outer periphery of capsomers, has been implicated in capsid stability. Here, we show that in bacteriophage P22, residue W61 at the tip of the E-loop plays a role in stabilizing procapsids and in maturation. We hypothesize that a hydrophobic pocket is formed by residues I366 and W410 in the P domain of a neighboring subunit within a capsomer, into which W61 fits like a peg. In addition, W61 likely bridges to residues A91 and L401 in P-domain loops of an adjacent capsomer, thereby linking the entire capsid together with a network of hydrophobic interactions. There is conservation of this hydrophobic network in the distantly related P22-like phages, indicating that this structural feature is likely important for stabilizing this family of phages. Thus, our data shed light on one of the varied elegant mechanisms used in nature to consistently build stable viral genome containers through subtle adaptation of the HK97 fold.IMPORTANCE Similarities in assembly reactions and coat protein structures of the dsDNA tailed phages and herpesviruses make phages ideal models to understand capsid assembly and identify potential targets for antiviral drug discovery. The coat protein E-loops of these viruses are involved in both intra- and intercapsomer interactions. In phage P22, hydrophobic interactions peg the coat protein subunits together within a capsomer, where the E-loop hydrophobic residue W61 of one subunit packs into a pocket of hydrophobic residues I366 and W410 of the adjacent subunit. W61 also makes hydrophobic interactions with A91 and L401 of a subunit in an adjacent capsomer. We show these intra- and intercapsomer hydrophobic interactions form a network crucial to capsid stability and proper assembly.


Asunto(s)
Bacteriófago P22/química , Pliegue de Proteína , Proteínas Virales/química , Bacteriófago P22/genética , Interacciones Hidrofóbicas e Hidrofílicas , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA