Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
ACS Omega ; 9(1): 166-177, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222566

RESUMEN

Proper management and control measurements are needed to stop the spread of highly pathogenic E. coli isolates that cause urinary tract infections (UTI) by developing new antibacterial agents to ensure the safety of public health. Therefore, the present investigations were used to achieve the synthesis of iron oxide nanoparticles (IONPs) via a simple coprecipitation method using ferric nitrates Fe (NO3)3 as the precursor and hydrazine solution as the precipitator and to explore the antibacterial activity against eradicating Uropathogenic Escherichia coli (E. coli). The synthesized IONPs were further studied using a UV-vis spectrophotometer, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopic (SEM) analysis. The maximum surface plasmon resonance peak was observed as absorption at 320 nm in a colloidal solution to validate the synthesis of IONPs. The FT-IR analysis was used to identify different photoactive functional groups that were responsible for the reduction of Fe (NO3)3 to IONPs. The crystalline nature of synthesized IONPs was revealed by XRD patterns with an average particle size ranging as 29 nm. The SEM image was employed to recognize the irregular morphology of synthesized nanoparticles. Moreover, significant antibacterial activity was observed at 1 mg/mL stock solution but after (125, 250, and 500 µg/mL) dilution, the synthesized IONPs showed moderate activity and became inactive at lower concentrations. The morphological and biochemical tests were used to confirm the presence of E. coli in the samples. Furthermore, the minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) were carried out to determine the inhibitory concentrations for the isolated bacteria. The isolated E. coli were also subjected to antibiotic sensitivity testing that showed high resistance to antibiotics such as penicillin and amoxicillin. Thus, the findings of this study were to use IONPs against antibiotic resistance that has been developed in an inappropriate way.

2.
ACS Omega ; 9(1): 317-329, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222602

RESUMEN

This research study was designed with the aim to prepare plant extract-mediated iron oxide nanoparticles (IONPs) and different chemically modified carbon adsorbents from the Parthenium hysterophorus plant and then optimize the carbon adsorbents by evaluating their adsorption applications in wastewater for the selected metal ions like arsenic (As3+), lead (Pb2+), and cadmium (Cd2+). The Fourier transform infrared spectroscopy (FTIR) technique was used to highlight functional groups in plant-mediated IONPs and chemically modified carbon adsorbents. A scanning electron microscopy study was conducted to explain the surface morphology of the adsorbents. Energy-dispersive X-rays was used for elemental analysis and X-ray diffraction for particle size and crystallinity of the adsorbents. From the study, it was found that the best optimum conditions were pH = 5-6, initial concentration of adsorbate of 10 mg/L, dose of adsorbent of 0.01 g, contact time of 90-120 min of adsorbent and adsorbate, and temperature of 25 °C. At optimum conditions, the adsorption capacities of IONPs for arsenic (As) 144.7 mg/g, lead (Pb) 128.01 mg/g, and cadmium (Cd) ions 122.1 mg/g were recorded. The activated carbon at optimum conditions showed adsorption capacities of 46.35 mg/g for As, 121.95 mg/g for Pb, and 113.25 mg/g for Cd ion. At equilibrium, Langmuir, Freundlich Temkin, and Dubinin-Radushkevich isotherms were applied on the experimental adsorption data having the best R2 values (0.973-0.999) by the Langmuir isotherm. High-correlation coefficient R2 values (0.996-0.999) were obtained from the pseudo-second-order for all cases, showing that the adsorption process proceeds through pseudo second-order kinetics. The apparent adsorption energy E value was in the range of 0.24-2.36 kJ/mol. The adsorption capacity of regenerated IONPs for As gradually decreased from 144.8 to 45.67 mg/g, for lead 128.15 to 41.65 mg/g, and cadmium from 122.10 to 31.20 mg/g in 5 consecutive cycles. The study showed that the synthesized IONPs and acid-activated carbon adsorbent were successfully used to remove selected metal ions from wastewater.

3.
ACS Omega ; 8(44): 41214-41222, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37970030

RESUMEN

The goal of the current study is to achieve plant-mediated synthesis of iron oxide nanoparticles (Fe2O3 NPs). The plant extract of Saccharum arundinaceum was used as a reducing and stabilizing agent for the synthesis of Fe2O3 NPs. Different techniques such as energy-dispersive X-ray analysis (EDX), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and UV-visible spectroscopy (UV-vis) were used to characterize the synthesis of Fe2O3 NPs. UV-visible spectroscopy verified the synthesis of Fe2O3 NPs using a surface plasmon resonance peak at a wavelength of 370 nm. SEM analysis specifies the spherical morphology of the synthesized nanoparticles with a size range between 30 and 70 nm. The reducing and capping materials of Fe2O3 NPs were revealed by FT-IR analysis based on functional group identification. The plant extract contained essential functional groups, such as C-H, C-O, N-H, -CH2, and -OH, that facilitate the green synthesis of Fe2O3 NPs. The EDX analysis detected the atomic percentage with the elemental composition of Fe2O3 NPs, while the XRD pattern demonstrated the crystallinity of Fe2O3 NPs. Furthermore, the synthesized Fe2O3 NPs showed potential antiglycation activity under in vitro conditions, which was confirmed by the efficient zone of inhibition on glycation of bovine serum albumin/glucose (BSA-glucose) in the order <100 < 500 < 1000 µg/mL, which revealed that Fe2O3 NPs showed significant antiglycation activity. Additionally, the cytotoxic activity against brain glioblastoma cells was assessed using the MTT assay, which exhibited diminished cytotoxic activity at concentrations lower than 300 µg/mL. Thus, we assumed that the resulting Fe2O3 NPs are a good option for use in drug delivery and cancer treatments.

4.
ACS Omega ; 8(19): 16948-16955, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37214675

RESUMEN

The green synthesis of nanoparticles using plant extract is a new method that can be used in various biomedical applications. Therefore, the green approach was an aspect of ongoing research for the synthesis titanium dioxide nanoparticles (TiO2 NP) using the Solanum surattense aqueous plant extract, which acts as a stabilizing and reducing agent. The synthesis of TiO2 NPs was confirmed by energy dispersive X-ray (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and UV-visible spectroscopy (UV-vis) analyses. The excitation energy to synthesize TiO2 NPs was identified through the UV-vis spectrophotometric analysis at a wavelength of 244 nm. Further, the FT-IR spectroscopy visualized different biomolecules like OH, C=O, C-H, and C-O that were present in an aqueous extract of the plant and were responsible for the stabilization of TiO2 NPs. The crystallinity and phase purity of TiO2 NPs were illustrated by the sharp peaks of the XRD pattern. The spherical morphology with sizes ranging from 10 to 80 nm was examined using SEM images. The elemental composition of TiO2 NPs was revealed by the intensity and narrow widths of titanium and oxygen using EDX analysis. This report also explains the antiepileptic activity of TiO2 NPs in a maximal electroshock-induced epileptic (MESE) and pentylenetetrazol (PTZ) model. The synthesized TiO2 NPs showed maximum antiepileptic activity in the PTZ model, significantly decreasing the convulsions (65.0 ± 5.50 s) at 180 mg/kg in contrast to standard drug phenytoin, whereas the MESE model was characterized by the appearance of extensor, clonus, and flexion. The results showed that synthesized TiO2 NPs significantly reduced the time spent in each stage (15.3 ± 0.20, 16.8 ± 0.25, and 20.5 ± 0.14 s) at 180 mg/kg as compared to control groups. Furthermore, the cytotoxicity of synthesized produced TiO2 NPs demonstrated that concentrations ≤80 µg/mL were biologically compatible.

5.
Molecules ; 27(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956882

RESUMEN

The use of non-toxic synthesis of iron oxide nanoparticles (FeO NPs) by an aqueous plant extract has proven to be a viable and environmentally friendly method. Therefore, the present investigation is based on the FeO NPs synthesis by means of FeCl3·6H2O as a precursor, and the plant extract of Nephrolepis exaltata (N. exaltata) serves as a capping and reducing agent. Various techniques were used to examine the synthesized FeO NPs, such as UV-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX). The FT-IR studies were used to identify different photoactive biomolecules at 3285, 2928, 1415, 1170, and 600 cm-1 in the wavenumber range from 4000 to 400 cm-1, indicating the -OH, C-H, C-O, C-C, and M-O groups, respectively. The XRD examination exhibited crystallinity, and the average diameter of the particle was 16 nm. The spherical nature of synthesized FeO NPs was recognized by SEM images, while the elemental composition of nanoparticles was identified by an EDX spectrophotometer. The antiplasmodial activity of synthesized FeO NPs was investigated against Plasmodium parasites. The antiplasmodial property of FeO NPs was evaluated by means of parasite inhibitory concentration, which showed higher efficiency (62 ± 1.3 at 25 µg/mL) against Plasmodium parasite if compared to plant extracts and precursor. The cytotoxicity of FeO NPs was also assessed in human peripheral blood mononuclear cells (PBMCs) under in vitro conditions. The lack of toxic effects through FeO NPs keeps them more effective for use in pharmaceutical and medical applications.


Asunto(s)
Antimaláricos , Nanopartículas del Metal , Nanopartículas , Antibacterianos/química , Antimaláricos/farmacología , Tecnología Química Verde/métodos , Humanos , Leucocitos Mononucleares , Nanopartículas Magnéticas de Óxido de Hierro , Nanopartículas del Metal/química , Nanopartículas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
6.
Molecules ; 27(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35889490

RESUMEN

The goal of the research was to explore a new green method used to synthesize silver nanoparticles (Ag NPs) from an aqueous extract of Trigonella incise, which serves as a reducing and stabilizing agent. The obtained results showed an 85% yield of nanoparticles by using 2:5 (v/v) of 5% plant extract with a 0.5 M solution of AgNO3. Different techniques were used to characterize the synthesized Ag NPs, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and UV-visible spectroscopy. The UV-visible spectra of green synthesized silver nanoparticles showed maximum absorption at a wavelength of 440 nm. The FT-IR studies revealed the stretching oscillation frequency of synthesized silver nanoparticles in the absorption band near 860 cm-1. Similarly, the bending and stretching oscillation frequencies of the NH function group were assigned to the band in the 3226 cm-1 and 1647 cm-1 regions. The bending vibration of C-O at 1159 cm-1 confirmed the carbonyl functional group that was also assigned to the small intensity band in the range of 2361 cm-1. The X-ray diffraction analysis of Ag NPs revealed four distinct diffraction peaks at 2θ of 38°, 45°, 65° and 78°, corresponds to (111), (200), (220) and (311) of the face-centered cubic shape. The round shape morphology of Ag NPs with a mean diameter in the range 20-80 nm was analyzed via SEM images. Furthermore, the nanoparticles showed more significant antimicrobial activity against Salmonella typhi (S. typhi) and Staphylococcus aureus (S. aureus) with an inhibition zone of 21.5 mm and 20.5 mm at 6 µg/mL concentrations, respectively, once compared to the standard reference. At concentrations of 2 µg/mL and 4 µg/mL, all of the bacterial strains showed moderate activity, with inhibition zones ranging from 11 mm to 18.5 mm. Even at high concentrations of AgNPs, S. typhi showed maximum resistance. The best antifungal activity was observed by synthesized Ag NPs against Candida albicans (C. albicans) with 21 mm zone of inhibition, as compared to a standard drug which gives 22 mm of inhibition. Therefore, we conclude that the antibacterial and antifungal activities showed satisfactory results from the synthesized Ag NPs.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Trigonella , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antifúngicos/farmacología , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plata/química , Plata/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus , Difracción de Rayos X
7.
Biomed Res Int ; 2022: 1621372, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757480

RESUMEN

Green synthesis of nanoparticles has emerged as an effective and environmentally friendly method. Therefore, the current investigation is based on the green synthesis of zinc oxide nanoparticles (ZnO-NPs) using plant extract of Sanvitalia procumbens (S. procumbens) that act as a capping and reducing agent. S. procumbens is a fast-growing shrub and densely available plant and may have potential to synthesize ZnO-NPs. The synthesized ZnO-NPs were characterized by different techniques, including Fourier transform infrared spectroscopy (FT-IR), UV-visible (UV-Vis), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The UV-Vis spectrum at 350 nm revealed an absorption peak for the synthesis of ZnO-NPs. In addition, photoactive biomolecules of the prepared ZnO-NPs were identified by using FT-IR spectroscopy. Furthermore, the spherical geometry of ZnO-NPs was evaluated by SEM images. The synthesized ZnO-NPs were also used to enhance the antidepressant activity and exhibited a remarkable reduction in the time of immobility in tail suspension tests (TST) and forced swim tests (FST), as well as increased the BDNF levels in the brain and plasma. ZnO-NPs have a low risk of biocompatibility (cell visibility) at a concentration of 7 g/mL or below. The nanoparticles were biologically compatible when the concentrations were increased up to 11 µg/mL. It was concluded that ZnO-NPs were investigated as a possible carrier for antidepressant drug delivery into the brain, and their excellent cytotoxic activity was evaluated by using the MTT assay to determine their biocompatibility.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Antibacterianos/química , Antidepresivos/farmacología , Antineoplásicos/análisis , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Extractos Vegetales/química , Hojas de la Planta/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Óxido de Zinc/química , Óxido de Zinc/farmacología
8.
Molecules ; 26(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34684724

RESUMEN

Green synthesis of silver nanoparticles (AgNPs) employing an aqueous plant extract has emerged as a viable eco-friendly method. The aim of the study was to synthesize AgNPs by using plant extract of Sanvitalia procumbens (creeping zinnia) in which the phytochemicals present in plant extract act as a stabilizing and reducing agent. For the stability of the synthesized AgNPs, different parameters like AgNO3 concentration, volume ratios of AgNO3, temperature, pH, and contact time were studied. Further, AgNPs were characterized by UV-visible spectroscopy, FT-IR (Fourier Transform Infrared Spectroscopy), XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), and EDX (Energy Dispersive X-ray Spectrometer) analysis. FT-IR analysis showed that the plant extract contained essential functional groups like O-H stretching of carboxylic acid, N-H stretching of secondary amides, and C-N stretching of aromatic amines, and C-O indicates the vibration of alcohol, ester, and carboxylic acid that facilitated in the green synthesis of AgNPs. The crystalline nature of synthesized AgNPs was confirmed by XRD, while the elemental composition of AgNPs was detected by energy dispersive X-ray analysis (EDX). SEM studies showed the mean particle diameter of silver nanoparticles. The synthesized AgNPs were used for photocatalytic degradation of Orange G and Direct blue-15 (OG and DB-15), which were analyzed by UV-visible spectroscopy. Maximum degradation percentage of OG and DB-15 azo dyes was observed, without any significant silver leaching, thereby signifying notable photocatalytic properties of AgNPs.


Asunto(s)
Asteraceae/metabolismo , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Compuestos Azo/química , Catálisis , Cistaceae , Microscopía Electrónica de Transmisión/métodos , Extractos Vegetales/química , Hojas de la Planta/química , Plata/química , Espectrometría por Rayos X/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Difracción de Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA