Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Neurology ; 103(9): e209888, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39353149

RESUMEN

BACKGROUND AND OBJECTIVES: Attack prevention is crucial in managing neuromyelitis optica spectrum disorders (NMOSDs). Eculizumab (ECU), an inhibitor of the terminal complement cascade, was highly effective in preventing attacks in a phase III trial of aquaporin-4 (AQP4)-IgG seropositive(+) NMOSDs. In this article, we evaluated effectiveness and safety of ECU in routine clinical care. METHODS: We retrospectively evaluated patients with AQP4-IgG+ NMOSD treated with ECU between December 2014 and April 2022 at 20 German and 1 Austrian university center(s) of the Neuromyelitis Optica Study Group (NEMOS) by chart review. Primary outcomes were effectiveness (assessed using annualized attack rate [AAR], MRI activity, and disability changes [Expanded Disability Status Scale {EDSS}]) and safety (including adverse events, mortality, and attacks after meningococcal vaccinations), analyzed by descriptive statistics. RESULTS: Fifty-two patients (87% female, age 55.0 ± 16.3 years) received ECU for 16.2 (interquartile range [IQR] 9.6 - 21.7) months. Forty-five patients (87%) received meningococcal vaccination before starting ECU, 9 with concomitant oral prednisone and 36 without. Seven of the latter (19%) experienced attacks shortly after vaccination (median: 9 days, IQR 6-10 days). No postvaccinal attack occurred in the 9 patients vaccinated while on oral prednisone before starting ECU and in 25 (re-)vaccinated while on ECU. During ECU therapy, 88% of patients were attack-free. The median AAR decreased from 1.0 (range 0-4) in the 2 years preceding ECU to 0 (range 0-0.8; p < 0.001). The EDSS score from start to the last follow-up was stable (median 6.0), and the proportion of patients with new T2-enhancing or gadolinium-enhancing MRI lesions in the brain and spinal cord decreased. Seven patients (13%) experienced serious infections. Five patients (10%; median age 53.7 years) died on ECU treatment (1 from myocardial infarction, 1 from ileus with secondary sepsis, and 3 from systemic infection, including 1 meningococcal sepsis), 4 were older than 60 years and severely disabled at ECU treatment start (EDSS score ≥ 7). The overall discontinuation rate was 19%. DISCUSSION: Eculizumab proved to be effective in preventing NMOSD attacks. An increased risk of attacks after meningococcal vaccination before ECU start and potentially fatal systemic infections during ECU-particularly in patients with comorbidities-must be considered. Further research is necessary to explore optimal timing for meningococcal vaccinations. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that eculizumab reduces annualized attack rates and new MRI lesions in AQP4-IgG+ patients with NMOSD.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neuromielitis Óptica , Humanos , Neuromielitis Óptica/tratamiento farmacológico , Femenino , Persona de Mediana Edad , Masculino , Anticuerpos Monoclonales Humanizados/uso terapéutico , Adulto , Estudios Retrospectivos , Anciano , Inactivadores del Complemento/uso terapéutico , Resultado del Tratamiento , Estudios de Cohortes , Vacunas Meningococicas , Acuaporina 4/inmunología , Imagen por Resonancia Magnética
2.
Artículo en Inglés | MEDLINE | ID: mdl-39099240

RESUMEN

OBJECTIVE: The first international consensus criteria for optic neuritis (ICON) were published in 2022. We applied these criteria to a prospective, global observational study of acute optic neuritis (ON). METHODS: We included 160 patients with a first-ever acute ON suggestive of a demyelinating CNS disease from the Acute Optic Neuritis Network (ACON). We applied the 2022 ICON to all participants and subsequently adjusted the ICON by replacing a missing relative afferent pupillary defect (RAPD) or dyschromatopsia if magnetic resonance imaging pathology of the optical nerve plus optical coherence tomography abnormalities or certain biomarkers are present. RESULTS: According to the 2022 ICON, 80 (50%) patients were classified as definite ON, 12 (7%) patients were classified as possible ON, and 68 (43%) as not ON (NON). The main reasons for classification as NON were absent RAPD (52 patients, 76%) or dyschromatopsia (49 patients, 72%). Distribution of underlying ON etiologies was as follows: 78 (49%) patients had a single isolated ON, 41 (26%) patients were diagnosed with multiple sclerosis, 25 (16%) patients with myelin oligodendrocyte glycoprotein antibody-associated disease, and 15 (9%) with neuromyelitis optica spectrum disorder. The application of the adjusted ON criteria yielded a higher proportion of patients classified as ON (126 patients, 79%). INTERPRETATION: According to the 2022 ICON, almost half of the included patients in ACON did not fulfill the requirements for classification of definite or possible ON, particularly due to missing RAPD and dyschromatopsia. Thorough RAPD examination and formal color vision testing are critical to the application of the 2022 ICON.

3.
Front Immunol ; 15: 1380025, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021565

RESUMEN

Comorbidities in patients with multiple sclerosis (MS) and antibody-mediated diseases of the central nervous system (CNS) including neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein (MOG)-antibody-associated disease (MOGAD) are common and may influence the course of their neurological disease. Comorbidity may contribute to neuronal injury and therefore limit recovery from attacks, accelerate disease progression, and increase disability. This study aims to explore the impact of comorbidity, particularly vascular comorbidity, and related risk factors on clinical and paraclinical parameters of MS, NMOSD and MOGAD. We propose COMMIT, a prospective multicenter study with longitudinal follow-up of patients with MS, NMOSD, and MOGAD, with or without comorbidities, as well as healthy subjects as controls. Subjects will be stratified by age, sex and ethnicity. In consecutive samples we will analyze levels of inflammation and neurodegeneration markers in both fluid and cellular compartments of the peripheral blood and cerebrospinal fluid (CSF) using multiple state-of-the-art technologies, including untargeted proteomics and targeted ultrasensitive ELISA assays and quantitative reverse transcription polymerase chain reaction (RT-qPCR) as well as high-dimensional single-cell technologies i.e., mass cytometry and single-cell RNA sequencing. Algorithm-based data analyses will be used to unravel the relationship between these markers, optical coherence tomography (OCT) and magnetic resonance imaging (MRI), and clinical outcomes including frequency and severity of relapses, long-term disability, and quality of life. The goal is to evaluate the impact of comorbidities on MS, NMOSD, and MOGAD which may lead to development of treatment approaches to improve outcomes of inflammatory demyelinating diseases of the CNS.


Asunto(s)
Comorbilidad , Esclerosis Múltiple , Neuromielitis Óptica , Humanos , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/inmunología , Estudios Prospectivos , Neuromielitis Óptica/epidemiología , Neuromielitis Óptica/inmunología , Neuromielitis Óptica/diagnóstico , Masculino , Femenino , Glicoproteína Mielina-Oligodendrócito/inmunología , Adulto , Biomarcadores/sangre , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Persona de Mediana Edad
4.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200269, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38941572

RESUMEN

BACKGROUND AND OBJECTIVES: Retinal optical coherence tomography (OCT) provides promising prognostic imaging biomarkers for future disease activity in multiple sclerosis (MS). However, raw OCT-derived measures have multiple dependencies, supporting the need for establishing reference values adjusted for possible confounders. The purpose of this study was to investigate the capacity for age-adjusted z scores of OCT-derived measures to prognosticate future disease activity and disability worsening in people with MS (PwMS). METHODS: We established age-adjusted OCT reference data using generalized additive models for location, scale, and shape for peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell-inner plexiform layer (GCIP) thicknesses, involving 910 and 423 healthy eyes, respectively. Next, we transformed the retinal layer thickness of PwMS from 3 published studies into age-adjusted z scores (pRNFL-z and GCIP-z) based on the reference data. Finally, we investigated the association of pRNFL-z or GCIP-z as predictors with future confirmed disability worsening (Expanded Disability Status Scale score increase) or disease activity (failing of the no evidence of disease activity [NEDA-3] criteria) as outcomes. Cox proportional hazards models or logistic regression analyses were applied according to the original studies. Optimal cutoffs were identified using the Akaike information criterion as well as location with the log-rank and likelihood-ratio tests. RESULTS: In the first cohort (n = 863), 172 PwMS (24%) had disability worsening over a median observational period of 2.0 (interquartile range [IQR]:1.0-3.0) years. Low pRNFL-z (≤-2.04) were associated with an increased risk of disability worsening (adjusted hazard ratio (aHR) [95% CI] = 2.08 [1.47-2.95], p = 3.82e-5). In the second cohort (n = 170), logistic regression analyses revealed that lower pRNFL-z showed a higher likelihood for disability accumulation at the two-year follow-up (reciprocal odds ratio [95% CI] = 1.51[1.06-2.15], p = 0.03). In the third cohort (n = 78), 46 PwMS (59%) did not maintain the NEDA-3 status over a median follow-up of 2.0 (IQR: 1.9-2.1) years. PwMS with low GCIP-z (≤-1.03) had a higher risk of showing disease activity (aHR [95% CI] = 2.14 [1.03-4.43], p = 0.04). Compared with raw values with arbitrary cutoffs, applying the z score approach with optimal cutoffs showed better performance in discrimination and calibration (higher Harrell's concordance index and lower integrated Brier score). DISCUSSION: In conclusion, our work demonstrated reference cohort-based z scores that account for age, a major driver for disease progression in MS, to be a promising approach for creating OCT-derived measures useable across devices and toward individualized prognostication.


Asunto(s)
Progresión de la Enfermedad , Esclerosis Múltiple , Tomografía de Coherencia Óptica , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Pronóstico , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/diagnóstico por imagen , Retina/diagnóstico por imagen , Retina/patología , Retina/fisiopatología , Índice de Severidad de la Enfermedad
5.
Sci Rep ; 14(1): 7507, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553515

RESUMEN

Multiple Sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS), with a largely unknown etiology, where mitochondrial dysfunction likely contributes to neuroaxonal loss and brain atrophy. Mirroring the CNS, peripheral immune cells from patients with MS, particularly CD4+ T cells, show inappropriate mitochondrial phenotypes and/or oxidative phosphorylation (OxPhos) insufficiency, with a still unknown contribution of mitochondrial DNA (mtDNA). We hypothesized that mitochondrial genotype in CD4+ T cells might influence MS disease activity and progression. Thus, we performed a retrospective cross-sectional and longitudinal study on patients with a recent diagnosis of either Clinically Isolated Syndrome (CIS) or Relapsing-Remitting MS (RRMS) at two timepoints: 6 months (VIS1) and 36 months (VIS2) after disease onset. Our primary outcomes were the differences in mtDNA extracted from CD4+ T cells between: (I) patients with CIS/RRMS (PwMS) at VIS1 and age- and sex-matched healthy controls (HC), in the cross-sectional analysis, and (II) different diagnostic evolutions in PwMS from VIS1 to VIS2, in the longitudinal analysis. We successfully performed mtDNA whole genome sequencing (mean coverage: 2055.77 reads/base pair) in 183 samples (61 triplets). Nonetheless, mitochondrial genotype was not associated with a diagnosis of CIS/RRMS, nor with longitudinal diagnostic evolution.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/genética , Linfocitos T , Estudios Transversales , Estudios Longitudinales , Estudios Retrospectivos , Esclerosis Múltiple Recurrente-Remitente/genética , ADN Mitocondrial/genética , Linfocitos T CD4-Positivos , Genotipo
6.
Front Neurol ; 15: 1308498, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343712

RESUMEN

Objective: Aquaporin-4-antibody-seropositive (AQP4-IgG+) Neuromyelitis Optica Spectrum Disorder (NMOSD) and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disorder (MOGAD) are relapsing neuroinflammatory diseases, frequently leading to chronic pain. In both diseases, the spinal cord (SC) is often affected by myelitis attacks. We hypothesized that regional SC volumes differ between AQP4-IgG + NMOSD and MOGAD and that pain intensity is associated with lower SC volumes. To evaluate changes in the SC white matter (WM), gray matter (GM), and pain intensity in patients with recent relapses (myelitis or optic neuritis), we further profiled phenotypes in a case series with longitudinal imaging and clinical data. Methods: Cross-sectional data from 36 participants were analyzed in this retrospective study, including 20 AQP4-IgG + NMOSD and 16 MOGAD patients. Pain assessment was performed in all patients by the Brief Pain Inventory and painDETECT questionnaires. Segmentation of SC WM, GM, cervical cord volumes (combined volume of WM + GM) was performed at the C2/C3 cervical level. WM% and GM% were calculated using the cervical cord volume as a whole per patient. The presence of pain, pain severity, and clinical disability was evaluated and tested for associations with SC segmentations. Additionally, longitudinal data were deeply profiled in a case series of four patients with attacks between two MRI visits within one year. Results: In AQP4-IgG + NMOSD, cervical cord volume was associated with mean pain severity within 24 h (ß = -0.62, p = 0.009) and with daily life pain interference (ß = -0.56, p = 0.010). Cross-sectional analysis showed no statistically significant SC volume differences between AQP4-IgG + NMOSD and MOGAD. However, in AQP4-IgG + NMOSD, SC WM% tended to be lower with increasing time from the last attack (ß = -0.41, p = 0.096). This tendency was not observed in MOGAD. Our case series including two AQP4-IgG + NMOSD patients revealed SC GM% increased by roughly 2% with either a myelitis or optic neuritis attack between visits. Meanwhile, GM% decreased by 1-2% in two MOGAD patients with a myelitis attack between MRI visits. Conclusion: In AQP4-IgG + NMOSD, lower cervical cord volume was associated with increased pain. Furthermore, cord GM changes were detected between MRI visits in patients with disease-related attacks in both groups. Regional SC MRI measures are pertinent for monitoring disease-related cord pathology in AQP4-IgG + NMOSD and MOGAD.

7.
PLoS Comput Biol ; 20(2): e1010980, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38329927

RESUMEN

Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from genes and proteins to cells and tissues, up to the full organism. In fact, any phenotype for an organism is dictated by the interplay among these scales. We conducted a multilayer network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed using mutual information for topological analysis, and Boolean simulations were constructed using Pearson correlation to identified paths within and among all layers. The path more commonly found from the Boolean simulations connects protein MK03, with total T cells, the thickness of the retinal nerve fiber layer (RNFL), and the walking speed. This path contains nodes involved in protein phosphorylation, glial cell differentiation, and regulation of stress-activated MAPK cascade, among others. Specific paths identified were subsequently analyzed by flow cytometry at the single-cell level. Combinations of several proteins (GSK3AB, HSBP1 or RS6) and immune cells (Th17, Th1 non-classic, CD8, CD8 Treg, CD56 neg, and B memory) were part of the paths explaining the clinical phenotype. The advantage of the path identified from the Boolean simulations is that it connects information about these known biological pathways with the layers at higher scales (retina damage and disability). Overall, the identified paths provide a means to connect the molecular aspects of MS with the overall phenotype.


Asunto(s)
Esclerosis Múltiple , Humanos , Estudios Prospectivos , Tomografía de Coherencia Óptica/métodos , Retina , Encéfalo , Proteínas de Choque Térmico
8.
Mult Scler J Exp Transl Clin ; 10(1): 20552173231226107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38269006

RESUMEN

Background: Superficial white matter (SWM) is a particularly vulnerable area of white matter adjacent to cerebral cortex that was shown to be a sensitive marker of disease severity in several neurological and psychiatric disorders, including multiple sclerosis (MS), but has not been studied in neuromyelitis optica spectrum disorder (NMOSD). Objective: To compare the integrity of SWM between MS patients, NMOSD patients and healthy controls, and explore the correlation of SWM integrity with cognitive performance and overall disability. Methods: Forty NMOSD patients, 48 MS patients and 52 healthy controls were included in the study. Mean diffusivity (MD) values obtained by diffusion tensor imaging were used as a measure of SWM integrity. Cognitive performance and overall disability were assessed with standardized tests. Results: Superficial white matter MD was increased in MS patients compared to healthy controls. Higher MD was associated with poorer spatial memory (most prominently in right temporal and right limbic lobe) and poorer information processing speed in MS patients. After adjusting for age, no significant differences of SWM MD were observed between NMOSD patients and healthy controls. Conclusion: Integrity of SWM is compromised in MS, but not in NMOSD, and can serve as a sensitive marker of disease severity.

9.
Ann Clin Transl Neurol ; 11(1): 45-56, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37903651

RESUMEN

OBJECTIVE: Retrograde trans-synaptic neuroaxonal degeneration is considered a key pathological factor of subclinical retinal neuroaxonal damage in multiple sclerosis (MS). We aim to evaluate the longitudinal association of optic radiation (OR) lesion activity with retinal neuroaxonal damage and its role in correlations between retinal and brain atrophy in people with clinically isolated syndrome and early MS (pweMS). METHODS: Eighty-five pweMS were retrospectively screened from a prospective cohort (Berlin CIS cohort). Participants underwent 3T magnetic resonance imaging (MRI) for OR lesion volume and brain atrophy measurements and optical coherence tomography (OCT) for retinal layer thickness measurements. All pweMS were followed with serial OCT and MRI over a median follow-up of 2.9 (interquartile range: 2.6-3.4) years. Eyes with a history of optic neuritis prior to study enrollment were excluded. Linear mixed models were used to analyze the association of retinal layer thinning with changes in OR lesion volume and brain atrophy. RESULTS: Macular ganglion cell-inner plexiform layer (GCIPL) thinning was more pronounced in pweMS with OR lesion volume increase during follow-up compared to those without (Difference: -0.82 µm [95% CI:-1.49 to -0.15], p = 0.018). Furthermore, GCIPL thinning correlated with both OR lesion volume increase (ß [95% CI] = -0.27 [-0.50 to -0.03], p = 0.028) and brain atrophy (ß [95% CI] = 0.47 [0.25 to 0.70], p < 0.001). Correlations of GCIPL changes with brain atrophy did not differ between pweMS with or without OR lesion increase ( η p 2 = 5.92e-7 , p = 0.762). INTERPRETATION: Faster GCIPL thinning rate is associated with increased OR lesion load. Our results support the value of GCIPL as a sensitive biomarker reflecting both posterior visual pathway pathology and global brain neurodegeneration.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Células Ganglionares de la Retina/patología , Estudios Prospectivos , Estudios Retrospectivos , Enfermedades del Sistema Nervioso Central/complicaciones , Atrofia/patología
10.
J Neurol ; 271(3): 1133-1149, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38133801

RESUMEN

BACKGROUND: Multiple sclerosis patients would benefit from machine learning algorithms that integrates clinical, imaging and multimodal biomarkers to define the risk of disease activity. METHODS: We have analysed a prospective multi-centric cohort of 322 MS patients and 98 healthy controls from four MS centres, collecting disability scales at baseline and 2 years later. Imaging data included brain MRI and optical coherence tomography, and omics included genotyping, cytomics and phosphoproteomic data from peripheral blood mononuclear cells. Predictors of clinical outcomes were searched using Random Forest algorithms. Assessment of the algorithm performance was conducted in an independent prospective cohort of 271 MS patients from a single centre. RESULTS: We found algorithms for predicting confirmed disability accumulation for the different scales, no evidence of disease activity (NEDA), onset of immunotherapy and the escalation from low- to high-efficacy therapy with intermediate to high-accuracy. This accuracy was achieved for most of the predictors using clinical data alone or in combination with imaging data. Still, in some cases, the addition of omics data slightly increased algorithm performance. Accuracies were comparable in both cohorts. CONCLUSION: Combining clinical, imaging and omics data with machine learning helps identify MS patients at risk of disability worsening.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/terapia , Estudios Prospectivos , Leucocitos Mononucleares , Imagen por Resonancia Magnética/métodos , Gravedad del Paciente , Aprendizaje Automático
11.
PLoS One ; 18(12): e0288366, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38060614

RESUMEN

Acute optic neuritis treatment lacks standardized protocols. The value of oral prednisone taper (OPT) following intravenous methylprednisolone (IVMP) on visual outcome parameters in optic neuritis (ON) has never been explored. In the present retrospective study, we investigated whether OPT after IVMP affects the structural and functional visual outcomes of inaugural clinically isolated syndrome (CIS)- or multiple sclerosis (MS)-ON. Adult patients with acute, inaugural, unilateral CIS- or MS-ON, treated with IVMP in Germany and Israel were stratified into patients treated with IVMP alone-versus IVMP and OPT. Inclusion criteria were age ≥18, CIS or MS diagnosis according to McDonald criteria 2017, available visual acuity (VA) at nadir before treatment initiation and at follow-up ≥5 months, as well as a spectral domain optic coherence tomography (OCT) data scan at follow-up. Exclusion criteria included recurrent ON, concomitant ophthalmological comorbidities, optical coherence tomography (OCT) of insufficient quality and ON-related escalation therapy after IVMP. The structural outcome was defined as the average retinal nerve fiber layer (RNFL) difference between the ON-affected and the unaffected eye, while the functional outcome was defined as the final high-contrast best-corrected VA (HC-BCVA) at follow-up compared to nadir. The comparative analysis was performed using linear regression analysis, adjusted for sex, age, and days-to-treatment. Fifty-one patients met the inclusion criteria (25% male). The mean age was 33.9 (±10.23) years. Twenty-six patients (51%) received OPT following IVMP. There was no difference in nadir HC-BCVA between the groups (0.39 No OPT; 0.49 With OPT, P = 0.36). Adjusted linear regression analysis did not indicate an influence of OPT on RNFL thickness or on HC-BCVA (beta coefficient for RNFL difference in percentages: 0.51, 95%-CI: [-4.58, 5.59], beta coefficient for logMAR: 0.11, 95%; CI [-0.12, 0.35] at follow-up. In conclusion, the addition of OPT to IVMP did not affect RNFL thickness or the final VA in a retrospective cohort of 51 patients with inaugural acute CIS- or MS-ON. The results of this exploratory study are currently being re-examined in a large-scale, demographically diverse, prospective study.


Asunto(s)
Esclerosis Múltiple , Neuritis Óptica , Adulto , Humanos , Masculino , Lactante , Femenino , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/diagnóstico , Metilprednisolona/uso terapéutico , Prednisona/uso terapéutico , Estudios Retrospectivos , Estudios Prospectivos , Neuritis Óptica/complicaciones , Tomografía de Coherencia Óptica/métodos
12.
iScience ; 26(9): 107679, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37680475

RESUMEN

Clinical and neuroscientific studies suggest a link between psychological stress and reduced brain health in health and neurological disease but it is unclear whether mediating pathways are similar. Consequently, we applied an arterial-spin-labeling MRI stress task in 42 healthy persons and 56 with multiple sclerosis, and investigated regional neural stress responses, associations between functional connectivity of stress-responsive regions and the brain-age prediction error, a highly sensitive machine learning brain health biomarker, and regional brain-age constituents in both groups. Stress responsivity did not differ between groups. Although elevated brain-age prediction errors indicated worse brain health in patients, anterior insula-occipital cortex (healthy persons: occipital pole; patients: fusiform gyrus) functional connectivity correlated with brain-age prediction errors in both groups. Finally, also gray matter contributed similarly to regional brain-age across groups. These findings might suggest a common stress-brain health pathway whose impact is amplified in multiple sclerosis by disease-specific vulnerability factors.

13.
Lancet Digit Health ; 5(10): e668-e678, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37775187

RESUMEN

BACKGROUND: Depression is three to four times more prevalent in patients with neurological and inflammatory disorders than in the general population. For example, in patients with multiple sclerosis, the 12-month prevalence of major depressive disorder is around 25% and it is associated with a lower quality of life, faster disease progression, and higher morbidity and mortality. Despite its clinical relevance, there are few treatment options for depression associated with multiple sclerosis and confirmatory trials are scarce. We aimed to evaluate the safety and efficacy of a multiple sclerosis-specific, internet-based cognitive behavioural therapy (iCBT) programme for the treatment of depressive symptoms associated with the disease. METHODS: This parallel-group, randomised, controlled, phase 3 trial of an iCBT programme to reduce depressive symptoms in patients with multiple sclerosis was carried out at five academic centres with large outpatient care units in Germany and the USA. Patients with a neurologist-confirmed diagnosis of multiple sclerosis and depressive symptoms were randomly assigned (1:1:1; automated assignment, concealed allocation, no stratification, no blocking) to receive treatment as usual plus one of two versions of the iCBT programme Amiria (stand-alone or therapist-guided) or to a control condition, in which participants received treatment as usual and were offered access to the iCBT programme after 6 months. Masking of participants to group assignment between active treatment and control was not possible, although raters were masked to group assignment. The predefined primary endpoint, which was analysed in the intention-to-treat population, was severity of depressive symptoms as measured by the Beck Depression Inventory-II (BDI-II) at week 12 after randomisation. This trial is registered at ClinicalTrials.gov, NCT02740361, and is complete. FINDINGS: Between May 3, 2017, and Nov 4, 2020, we screened 485 patients for eligibility. 279 participants were enrolled, of whom 101 were allocated to receive stand-alone iCBT, 85 to receive guided iCBT, and 93 to the control condition. The dropout rate at week 12 was 18% (50 participants). Both versions of the iCBT programme significantly reduced depressive symptoms compared with the control group (BDI-II between-group mean differences: control vs stand-alone iCBT 6·32 points [95% CI 3·37-9·27], p<0·0001, effect size d=0·97 [95% CI 0·64-1·30]; control vs guided iCBT 5·80 points [2·71-8·88], p<0·0001, effect size d=0·96 [0·62-1·30]). Clinically relevant worsening of depressive symptoms was observed in three participants in the control group, one in the stand-alone iCBT group, and none in the guided iCBT group. No occurrences of suicidality were observed during the trial and there were no deaths. INTERPRETATION: This trial provides evidence for the safety and efficacy of a multiple sclerosis-specific iCBT tool to reduce depressive symptoms in patients with the disease. This remote-access, scalable intervention increases the therapeutic options in this patient group and could help to overcome treatment barriers. FUNDING: National Multiple Sclerosis Society (USA).


Asunto(s)
Terapia Cognitivo-Conductual , Trastorno Depresivo Mayor , Esclerosis Múltiple , Humanos , Depresión/terapia , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/terapia , Trastorno Depresivo Mayor/terapia , Calidad de Vida , Análisis Costo-Beneficio , Internet
14.
Mult Scler J Exp Transl Clin ; 9(3): 20552173231195879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37641618

RESUMEN

Background: Functional connectome fingerprinting can identify individuals based on their functional connectome. Previous studies relied mostly on short intervals between fMRI acquisitions. Objective: This cohort study aimed to determine the stability of connectome-based identification and their underlying signatures in patients with multiple sclerosis and healthy individuals with long follow-up intervals. Methods: We acquired resting-state fMRI in 70 patients with multiple sclerosis and 273 healthy individuals with long follow-up times (up to 4 and 9 years, respectively). Using functional connectome fingerprinting, we examined the stability of the connectome and additionally investigated which regions, connections and networks supported individual identification. Finally, we predicted cognitive and behavioural outcome based on functional connectivity. Results: Multiple sclerosis patients showed connectome stability and identification accuracies similar to healthy individuals, with longer time delays between imaging sessions being associated with accuracies dropping from 89% to 76%. Lesion load, brain atrophy or cognitive impairment did not affect identification accuracies within the range of disease severity studied. Connections from the fronto-parietal and default mode network were consistently most distinctive, i.e., informative of identity. The functional connectivity also allowed the prediction of individual cognitive performances. Conclusion: Our results demonstrate that discriminatory signatures in the functional connectome are stable over extended periods of time in multiple sclerosis, resulting in similar identification accuracies and distinctive long-lasting functional connectome fingerprinting signatures in patients and healthy individuals.

15.
Front Neurol ; 14: 1102353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908609

RESUMEN

Optic neuritis (ON) often occurs at the presentation of multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD). The recommended treatment of high-dose corticosteroids for ON is based on a North American study population, which did not address treatment timing or antibody serostatus. The Acute Optic Neuritis Network (ACON) presents a global, prospective, observational study protocol primarily designed to investigate the effect of time to high-dose corticosteroid treatment on 6-month visual outcomes in ON. Patients presenting within 30 days of the inaugural ON will be enrolled. For the primary analysis, patients will subsequently be assigned into the MS-ON group, the aquapotin-4-IgG positive ON (AQP4-IgG+ON) group or the MOG-IgG positive ON (MOG-IgG+ON) group and then further sub-stratified according to the number of days from the onset of visual loss to high-dose corticosteroids (days-to-Rx). The primary outcome measure will be high-contrast best-corrected visual acuity (HC-BCVA) at 6 months. In addition, multimodal data will be collected in subjects with any ON (CIS-ON, MS-ON, AQP4-IgG+ON or MOG-IgG+ON, and seronegative non-MS-ON), excluding infectious and granulomatous ON. Secondary outcomes include low-contrast best-corrected visual acuity (LC-BCVA), optical coherence tomography (OCT), magnetic resonance imaging (MRI) measurements, serum and cerebrospinal fluid (CSF) biomarkers (AQP4-IgG and MOG-IgG levels, neurofilament, and glial fibrillary protein), and patient reported outcome measures (headache, visual function in daily routine, depression, and quality of life questionnaires) at presentation at 6-month and 12-month follow-up visits. Data will be collected from 28 academic hospitals from Africa, Asia, the Middle East, Europe, North America, South America, and Australia. Planned recruitment consists of 100 MS-ON, 50 AQP4-IgG+ON, and 50 MOG-IgG+ON. This prospective, multimodal data collection will assess the potential value of early high-dose corticosteroid treatment, investigate the interrelations between functional impairments and structural changes, and evaluate the diagnostic yield of laboratory biomarkers. This analysis has the ability to substantially improve treatment strategies and the accuracy of diagnostic stratification in acute demyelinating ON. Trial registration: ClinicalTrials.gov, identifier: NCT05605951.

17.
Eur J Neurol ; 30(4): 982-990, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36635219

RESUMEN

BACKGROUND AND PURPOSE: Thinning of the retinal combined ganglion cell and inner plexiform layer (GCIP) as measured by optical coherence tomography (OCT) is a common finding in patients with multiple sclerosis. This study aimed to investigate whether a single retinal OCT analysis allows prediction of future disease activity after a first demyelinating event. METHODS: This observational cohort study included 201 patients with recently diagnosed clinically isolated syndrome or relapsing-remitting multiple sclerosis from two German tertiary referral centers. Individuals underwent neurological examination, magnetic resonance imaging, and OCT at baseline and at yearly follow-up visits. RESULTS: Patients were included at a median disease duration of 2.0 months. During a median follow-up of 59 (interquartile range = 43-71) months, 82% of patients had ongoing disease activity as demonstrated by failing the no evidence of disease activity 3 (NEDA-3) criteria, and 19% presented with confirmed disability worsening. A GCIP threshold of ≤77 µm at baseline identified patients with a high risk for NEDA-3 failure (hazard ratio [HR] = 1.7, 95% confidence interval [CI] = 1.1-2.8, p = 0.04), and GCIP measures of ≤69 µm predicted disability worsening (HR = 2.2, 95% CI = 1.2-4.3, p = 0.01). Higher rates of annualized GCIP loss increased the risk for disability worsening (HR = 2.5 per 1 µm/year increase of GCIP loss, p = 0.03). CONCLUSIONS: Ganglion cell thickness as measured by OCT after the initial manifestation of multiple sclerosis may allow early risk stratification as to future disease activity and progression.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Células Ganglionares de la Retina/patología , Esclerosis Múltiple Recurrente-Remitente/patología , Esclerosis Múltiple/patología , Retina/patología , Estudios de Cohortes , Tomografía de Coherencia Óptica/métodos
18.
BMC Neurol ; 22(1): 479, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517734

RESUMEN

BACKGROUND: Large-scale disease overarching longitudinal data are rare in the field of neuroimmunology. However, such data could aid early disease stratification, understanding disease etiology and ultimately improve treatment decisions. The Berlin Registry of Neuroimmunological Entities (BERLimmun) is a longitudinal prospective observational study, which aims to identify diagnostic, disease activity and prognostic markers and to elucidate the underlying pathobiology of neuroimmunological diseases. METHODS: BERLimmun is a single-center prospective observational study of planned 650 patients with neuroimmunological disease entity (e.g. but not confined to: multiple sclerosis, isolated syndromes, neuromyelitis optica spectrum disorders) and 85 healthy participants with 15 years of follow-up. The protocol comprises annual in-person visits with multimodal standardized assessments of medical history, rater-based disability staging, patient-report of lifestyle, diet, general health and disease specific symptoms, tests of motor, cognitive and visual functions, structural imaging of the neuroaxis and retina and extensive sampling of biological specimen. DISCUSSION: The BERLimmun database allows to investigate multiple key aspects of neuroimmunological diseases, such as immunological differences between diagnoses or compared to healthy participants, interrelations between findings of functional impairment and structural change, trajectories of change for different biomarkers over time and, importantly, to study determinants of the long-term disease course. BERLimmun opens an opportunity to a better understanding and distinction of neuroimmunological diseases.


Asunto(s)
Esclerosis Múltiple , Neuromielitis Óptica , Humanos , Acuaporina 4 , Autoanticuerpos , Berlin , Estudios Longitudinales , Esclerosis Múltiple/diagnóstico , Glicoproteína Mielina-Oligodendrócito , Neuromielitis Óptica/diagnóstico , Estudios Observacionales como Asunto , Sistema de Registros
19.
Sci Rep ; 12(1): 21312, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494385

RESUMEN

Optic neuritis (ON) is a frequent presentation at onset of multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). The pathophysiology underlying these diseases, especially MOGAD, is still being elucidated. While obesity has been reported to potentially be a risk factor for MS, this has not been explored in NMOSD or MOGAD. We aimed to investigate a possible association between obesity (body mass index [BMI] > 30 kg/m2) in patients with MOGAD, aquaporin 4-IgG positive NMOSD (AQP4-IgG+ NMOSD) or MS. In this multicenter non-interventional retrospective study, data was collected from patients with a first ever demyelinating attack of ON subsequently diagnosed with MOGAD (n = 44), AQP4-IgG+ NMOSD (n = 49) or MS (n = 90) between 2005 and 2020. The following data was collected: age, sex, ethnicity, BMI (documented before corticosteroid treatment), and the ON etiology after diagnostic work-up. A mixed model analysis was performed to assess the potential of obesity or BMI to predict MOGAD-ON, and to distinguish MOGAD-ON from AQP4-IgG+ NMOSD-ON and MS-ON. Main outcome measures included BMI in patients with acute ON and subsequent diagnosis of MOGAD, AQP4-IgG+ NMOSD or MS. A higher BMI was significantly associated with a diagnosis of MOGAD-ON (p < 0.001); in MOGAD patients the mean BMI was 31.6 kg/m2 (standard deviation (SD) 7.2), while the mean BMI was 24.7 kg/m2 (SD 5.3) in AQP4-IgG+ NMOSD patients, and 26.9 kg/m2 (SD 6.2) in MS patients. Mixed-effects multinomial logistic regression, adjusted for age and sex, with obesity as a binary variable, revealed that obesity was associated with a higher odds ratio (OR) of a subsequent MOGAD diagnosis (OR 5.466, 95% CI [2.039, 14.650], p = 0.001) in contradistinction with AQP4-IgG+ NMOSD. This study suggests an association between obesity and MOGAD. Our findings require further exploration, but could have significant pathophysiologic implications if confirmed in larger prospective studies.


Asunto(s)
Esclerosis Múltiple , Neuromielitis Óptica , Neuritis Óptica , Humanos , Glicoproteína Mielina-Oligodendrócito , Estudios Retrospectivos , Estudios Prospectivos , Autoanticuerpos , Inmunoglobulina G , Acuaporina 4 , Obesidad/complicaciones
20.
Klin Monbl Augenheilkd ; 239(11): 1305-1314, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35995144

RESUMEN

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a rare demyelinating autoimmune disorder of the central nervous system. MOGAD frequently manifests with severe, bilateral, and episodes of recurrent optic neuritis (ON) and is an important differential diagnosis to multiple sclerosis and aquaporin-4-IgG seropositive neuromyelitis optica spectrum disorders. Besides ON, the clinical manifestations of MOGAD commonly include transverse myelitis, acute disseminated encephalomyelitis, and brain stem encephalitis. In this review, we summarize the current knowledge of the neuro-ophthalmological presentation of MOGAD-ON. We describe epidemiological aspects, including the association with COVID-19 and other infections or vaccinations, clinical presentation, and imaging findings of MOGAD-ON in the acute stage and during remission. Furthermore, we report findings on prognosis, treatment response, and changes in ON-unaffected eyes. We touch upon findings on visual acuity, visual fields, and visual evoked potentials, as well as structural changes assessed with optical coherence tomography. Moreover, we explain how to differentiate MOGAD from its differential diagnoses, including other neuroinflammatory disorders (multiple sclerosis and neuromyelitis optica spectrum disorders), but also idiopathic intracranial hypertension.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Neuromielitis Óptica , Neuritis Óptica , Humanos , Glicoproteína Mielina-Oligodendrócito , Neuromielitis Óptica/diagnóstico , Potenciales Evocados Visuales , Autoanticuerpos , Neuritis Óptica/diagnóstico , Esclerosis Múltiple/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA