Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Heliyon ; 10(16): e34746, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253191

RESUMEN

Tragopogon dubius is commonly consumed as a vegetable and used in traditional medicine for treating inflammatory skin conditions and cutaneous swelling. Despite known pharmacological properties of its leaves and roots, many of its biological characteristics and active phytochemicals remain unexplored. The present study investigates the phytochemical composition, antioxidant, and anticancer properties of methanolic root extracts and isolated fractions (TdRM-1 and TdRM-2) of T. dubius. Utilizing preparative thin-layer chromatography, the crude extract was successfully separated into TdRM-1 and TdRM-2, characterized by GC-MS and FTIR analysis, revealing a diverse range of bioactive compounds including terpenes, flavonoids, and phenolic acids. Qualitative phytochemical screening indicated the presence of carbohydrates, tannins, alkaloids, and other phytoconstituents. Advanced UPLC-ESI-QTOF-MS analysis identified 54 metabolites, significantly contributing to the chemical profiling of the extract. The antioxidant activities of the fractions were quantitatively assessed using ABTS, DPPH, and superoxide radical scavenging assays, where TdRM-2 exhibited superior activity with IC50 values ranging from 51.29 to 60.03 µg/mL. Anticancer potential was evaluated against A549, LN-18, and MCF-7 cancer cell lines, demonstrating that TdRM-2 significantly inhibited cell proliferation with GI50 values as low as 31.62 µg/mL for A549 cells. Additionally, fluorescence microscopy revealed that TdRM-2 induces apoptosis, indicated by changes in nuclear morphology and loss of mitochondrial membrane potential. Annexin V-FITC/PI double staining indicate that the TdRM-2 fractions from T. dubius can significantly inhibit the growth of A-549, LN-18, and MCF-7 cancer cell lines by inducing apoptosis These findings suggest that T. dubius root extracts, particularly the TdRM-2 fraction, hold promising therapeutic potential due to their significant antioxidant and anticancer activities, underpinned by their rich phytochemical composition. This study underscores the importance of T. dubius as a source of natural bioactive compounds with potential health benefits.

2.
Biosens Bioelectron ; 267: 116808, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39326319

RESUMEN

Malathion (MALA), a widely used insecticide, even at trace levels exhibits deleterious effects towards respiratory tracts, and nervous system, necessitating its detection. Herein, we have offered non-enzymatic trace level monitoring of MALA using g-C3N4 supported CuO-derived biochar. The present B-CuO/g-C3N4 based electrochemical sensor is synthesized using hydrothermal approach followed by calcination at high temperature. The result unveiled the strong interactions, high charge separation efficiency, significant porosity leading to excellent electrochemically active surface area 9.88 × 10-5 cm2 with least charge transfer resistance (RCT) value of 35.2 K Ω. The B-CuO/g-C3N4 based nanocomposite offered excellent complex formation ability with MALA and square wave anodic stripping voltametric method (SWASV) generates an enhanced electrochemical signal due to oxidation of MALA. Following all necessary optimizations, the sensor was capable to exhibit limit of detection (LOD) value of 1.2 pg mL-1 with R2 = 0.968. The modified biosensor offered its potential towards detection of MALA in apple and tomato samples with a recovery ranging from 87.64 to 120.59%. This novel B-CuO/g-C3N4 ternary nanocomposite provides non-enzymatic detection of MALA having excellent electrochemical properties and hence opens new pathways for exploring the use of biochar in other electrochemical applications.

3.
Heliyon ; 10(16): e36056, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224312

RESUMEN

The brain is an energy demanding organ, constituting about 20 % of the body's resting metabolic rate. An efficient energy metabolism is critical to neuronal functions. Glucose serves as the primary essential energy source for the adult brain and plays a critical role in supporting neural growth and development. Endocrine disrupting chemicals (EDCs) such as phthalates has been shown to have a negative impact on neurological functions. The impact of diisononyl phthalate (DiNP) on neural energy transduction using cellular energy metabolizing enzymes as indicators was examined. Over the course of 14 days, eighteen (18) albino rats divided into three groups (1,2 and 3) of six albino rats were given Tween-80/saline, 20 and 200 mg/kg body weight respectively. In the brain, we assessed histological changes as well as activities of selected enzymes of energy metabolism such as the glycolytic pathway, citric acid cycle and mitochondrial electron transport-linked complexes. Activities of the glycolytic and TCA cycle enzymes assayed were significantly decreased except citrate synthase activity with no statistically significant change following the administration of DiNP. Also, respiratory chain complexes (Complex I-IV) activities were significantly reduced when compared to control. DiNP exposure altered the histological integrity of various brain sections. These include degenerated Purkinje neurons, distortion of the granular layer and Purkinje cell layer. Data from this study indicated impaired brain energy metabolism via down-regulation of enzymes of cellular respiration of the glycolytic and oxidative phosphorylation pathways and altered brain histoarchitecture orchestrated by DiNP exposure.

5.
Endocrinol Diabetes Metab ; 7(5): e486, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39086121

RESUMEN

BACKGROUND: The response of patients with Type 2 diabetes mellitus (T2DM) to metformin may be a variation because of genetic differences in solute carrier (SLC) transporter proteins and other effect factors, which have an important effect on how metformin is processed in the body and its efficiency for glycaemic control. AIM: This study was conducted to investigate the impact of certain genetic variants of the organic cation transporter genes OCT3 (SLC22A3 rs12194182 and rs8187722) and MATE2 (SLC47A2 rs12943590) and their association with glycaemic parameters in patients with T2DM who respond poorly to metformin. PATIENTS AND METHODS: This cross-sectional study involved 150 Iraqi cases with T2DM who were prescribed a daily dose of (1000 mg/day) metformin for a minimum of 3 months. Various parameters included are as follows: demographic data, glycaemic parameters and three SNPs: rs12943590 variant of SLC47A2, rs12194182 and rs8187722 variant of SLC22A3 using the standard PCR-sequencing technique. RESULTS: Thirty-nine patients (26.17%) were responders, whereas 111 patients (73.82%) could not respond to metformin treatment. Upon analysing the genotypes of the rs12943590 variants of SLC47A2, rs12194182 and rs8187722 SNPs of SLC22A3, the present findings revealed a nonsignificant association of genetic variations in all SNPs with metformin response. SLC47A2 (rs12943590) showed nonsignificant associations of the GG, AA and AG genotyping; SLC22A3 (rs12194182) showed nonsignificant associations of the TT, TC and CC genotyping; and SLC22A3 (rs8187722) showed nonsignificant associations of the AA, CC and AC genotyping between two groups. CONCLUSION: Variations in genes SLC22A3 and SLC47A2 did not have a significant role in the response of patients with T2DM to metformin (1000 mg/day).


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Metformina , Proteínas de Transporte de Catión Orgánico , Polimorfismo de Nucleótido Simple , Humanos , Metformina/administración & dosificación , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Proteínas de Transporte de Catión Orgánico/genética , Masculino , Femenino , Persona de Mediana Edad , Estudios Transversales , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/uso terapéutico , Adulto , Anciano , Genotipo , Glucemia
6.
Plants (Basel) ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38999583

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) exhibit diverse applications, including antimicrobial, UV-blocking, and catalytic properties, due to their unique structure and properties. This study focused on the characterization of zinc oxide nanoparticles (ZnO NPs) synthesized from Juglans regia leaves and their application in mitigating the impact of simultaneous infection by Meloidogyne arenaria (root-knot nematode) and Macrophomina phaseolina (root-rot fungus) in cowpea plants. The characterization of ZnO NPs was carried out through various analytical techniques, including UV-visible spectrophotometry, Powder-XRD analysis, FT-IR spectroscopy, and SEM-EDX analysis. The study confirmed the successful synthesis of ZnO NPs with a hexagonal wurtzite structure and exceptional purity. Under in vitro conditions, ZnO NPs exhibited significant nematicidal and antifungal activities. The mortality of M. arenaria juveniles increased with rising ZnO NP concentrations, and a similar trend was observed in the inhibition of M. phaseolina mycelial growth. SEM studies revealed physical damage to nematodes and structural distortions in fungal hyphae due to ZnO NP treatment. In infected cowpea plants, ZnO NPs significantly improved plant growth parameters, including plant length, fresh mass, and dry mass, especially at higher concentrations. Leghemoglobin content and the number of root nodules also increased after ZnO NP treatment. Additionally, ZnO NPs reduced gall formation and egg mass production by M. arenaria nematodes and effectively inhibited the growth of M. phaseolina in the roots. Furthermore, histochemical analyses demonstrated a reduction in oxidative stress, as indicated by decreased levels of reactive oxygen species (ROS) and lipid peroxidation in ZnO NP-treated plants. These findings highlight the potential of green-synthesized ZnO NPs as an eco-friendly and effective solution to manage disease complex in cowpea caused by simultaneous nematode and fungal infections.

7.
Curr Pharm Des ; 30(26): 2075-2085, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867531

RESUMEN

BACKGROUND: Patient adherence to therapy and compliance is always a challenge for care providers in the management of chronic disorders with multiple medications. OBJECTIVE: Our study focused on formulating concurrently prescribed ARB (Angiotensin Receptor Blocker), i.e., losartan potassium, and a cholesterol-lowering statin derivative, i.e., rosuvastatin calcium, in a fixed-dose combination tablet. METHODS: The drugs were selected based on the presence of synergism and variation in solubility characteristics. Trial batches with fixed concentrations of both active pharmaceutical ingredients (APIs) and varying quantities of different excipients were prepared by dry granulation technique and subjected to different quality control tests for tablets. Batch F5 was selected on the basis of in-process quality control data for the development of a drug release protocol. Experimental conditions were optimized. Based on the sink condition, phosphate buffer (pH 6.8) was selected as the dissolution medium. Simultaneous determination of both APIs in samples collected at predetermined time intervals was carried out using the RP-HPLC technique with acetonitrile, methanol, and water (20:25:55 v/v/v) as mobile phase. RESULTS: Complete dissolution of both APIs in the FDC tablet was achieved in 45 min in 900 mL of the selected medium. The in vitro drug release protocol was validated for accuracy and precision without interference with sample analysis. CONCLUSION: In this study, a validated, accurate, and robust dissolution testing method was developed for the newly formulated FDC tablet.


Asunto(s)
Combinación de Medicamentos , Liberación de Fármacos , Estabilidad de Medicamentos , Losartán , Rosuvastatina Cálcica , Comprimidos , Rosuvastatina Cálcica/administración & dosificación , Rosuvastatina Cálcica/química , Rosuvastatina Cálcica/farmacocinética , Losartán/química , Losartán/administración & dosificación , Losartán/análisis , Solubilidad , Cromatografía Líquida de Alta Presión , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación
8.
Heliyon ; 10(10): e31563, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38826706

RESUMEN

A series of six unsymmetrical thiourea derivatives, namely 1-cyclohexyl-3-(pyridin-2-yl) thiourea (1), 1-cyclohexyl-3-(3-methylpyridin-2-yl)thiourea (2), 1-cyclohexyl-3-(2,4-dimethylphenyl) thiourea (3), 1-(4-chlorophenyl)-3-cyclohexylthiourea (4), 1-(3-methylpyridin-2-yl)-3-phenylthiourea (5), and 1-(3-chlorophenyl)-3-phenylthiourea (6), were successfully synthesized via reaction between different amines with isothiocyanates under a non-catalytic environment. Structural elucidation of compounds (1-6) was performed using FT-IR and NMR (1H and 13C) spectroscopy. The infrared spectra displayed characteristic stretching vibrations, while the 13C NMR chemical shifts of the thiourea moiety (C[bond, double bond]S) were observed in the range of 179.1-181.4 ppm. The antioxidative and antimicrobial properties of the compounds were assessed, as well as their inhibitory effects on acetylcholinesterase and butyrylcholinesterase were evaluated. In order to analyze the fluorescence characteristics of each compound (1-6), the excitation (λex) and emission (λem) wavelengths were scanned within the range of 250-750 nm, with the solvent blank serving as a standard. It was observed that when dissolved in acetone, toluene, tetrahydrofuran, and ethyl acetate, these compounds exhibited emission peaks ranging from 367 to 581 nm and absorption peaks ranging from 275 to 432 nm.

9.
Sci Rep ; 14(1): 14712, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926453

RESUMEN

Human health is becoming concerned about exposure to endocrine disrupting chemicals (EDCs) emanating from plastic, such as phthalates, which are industrially employed as plasticizers in the manufacturing of plastic products. Due to some toxicity concerns, di(2-ethylhexyl) phthalate (DEHP) was replaced by diisononyl phthalate (DiNP). Recent data, however, highlights the potential of DiNP to interfere with the endocrine system and influence allergic responses. Asthma affects brain function through hypoxia, systemic inflammation, oxidative stress, and sleep disturbances and its effective management is crucial for maintaining respiratory and brain health. Therefore, in DiNP-induced asthmatic mice, this study investigated possible crosstalk between the lungs and the brain inducing perturbations in neural mitochondrial antioxidant status, inflammation biomarkers, energy metabolizing enzymes, and apoptotic indicators. To achieve this, twelve (n = 12, 20-30 g) male BALB/c mice were divided into two (2) experimental groups, each with five (6) mice. Mice in group II were subjected to 50 mg/kg body weight (BW) DiNP (Intraperitoneal and intranasal), while group I served as the control group for 24 days. The effects of DiNP on neural energy metabolizing enzymes (Hexokinase, Aldolase, NADase, Lactate dehydrogenase, Complex I, II, II & IV), biomarkers of inflammation (Nitric oxide, Myeloperoxidase), oxidative stress (malondialdehyde), antioxidants (catalase, glutathione-S-transferase, and reduced glutathione), oncogenic and apoptotic factors (p53, K-ras, Bcl, etc.), and brain histopathology were investigated. DiNP-induced asthmatic mice have significantly (p < 0.05) altered neural energy metabolizing capacities due to disruption of activities of enzymes of glycolytic and oxidative phosphorylation. Other responses include significant inflammation, oxidative distress, decreased antioxidant status, altered oncogenic-apoptotic factors level and neural degeneration (as shown in hematoxylin and eosin-stained brain sections) relative to control. Current findings suggest that neural histoarchitecture, energy metabolizing potentials, inflammation, oncogenic and apoptotic factors, and mitochondrial antioxidant status may be impaired and altered in DiNP-induced asthmatic mice suggesting a pivotal crosstalk between the two intricate organs (lungs and brain).


Asunto(s)
Apoptosis , Asma , Pulmón , Ratones Endogámicos BALB C , Mitocondrias , Estrés Oxidativo , Ácidos Ftálicos , Animales , Apoptosis/efectos de los fármacos , Asma/metabolismo , Asma/inducido químicamente , Asma/patología , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones , Masculino , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos
10.
Eur J Pharm Sci ; 198: 106797, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38735401

RESUMEN

The multicomponent etiology, complex clinical implications, dose-based side effect and degree of pain mitigation associated with the current pharmacological therapy is incapable in complete resolution of chronic neuropathic pain patients which necessitates the perpetual requirement of novel medication therapy. Therefore, this study explored the ameliorative aptitude of two novel methanimine imitative like (E)-N-(4-nitrobenzylidene)-4­chloro-2-iodobenzamine (KB 09) and (E)-N-(4-methylbenzylidene)-4­chloro-2-iodobenzamine (KB 10) in chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rat model. Standard behavioral tests like dynamic and static allodynia, cold, thermal and mechanical hyperalgesia along with rotarod activity were performed at various experimental days like 0, 3, 7, 14 and 21. Enzyme linked immunosorbent assay (ELISA) on spinal tissue and antioxidant assays on sciatic nerve were executed accompanied by molecular docking and simulation studies. Prolonged ligation of sciatic nerve expressively induced hyperalgesia as well as allodynia in rats. KB 09 and KB 10 substantially attenuated the CCI elicited hyperalgesia and allodynia. They significantly reduced the biomarkers of pain and inflammation like Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in ELISA and while enhanced the GSH, SOD and CAT and diminished the MDA levels during antioxidant assays. KB 09 displayed -9.62 kcal/mol with TNF-α and -7.68 kcal/mol binding energy with IL-6 whereas KB 10 exhibited binding energy of -8.20 kcal/mol with IL-6 while -11.68 kcal/mol with TNF-α and hence both trial compounds ensured stable interaction with IL-6 and TNF-α during computational analysis. The results advocated that both methanimine derivatives might be novel candidates for attenuation of CCI-induced neuropathic pain prospects via anti-nociceptive, anti-inflammatory and antioxidant mechanisms.


Asunto(s)
Hiperalgesia , Simulación del Acoplamiento Molecular , Neuralgia , Nervio Ciático , Animales , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Masculino , Hiperalgesia/tratamiento farmacológico , Nervio Ciático/lesiones , Nervio Ciático/efectos de los fármacos , Ratas , Ratas Wistar , Modelos Animales de Enfermedad , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos/química , Antioxidantes/farmacología , Antioxidantes/química , Simulación por Computador , Constricción , Iminas/química , Iminas/farmacología
11.
Acta Trop ; 255: 107236, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692450

RESUMEN

Endometritis reduces reproductive effectiveness and leads to significant financial losses in the dairy sector. Luteolin is a natural phyto-flavonoid compound with many biological activities. However, the therapeutic effect of Luteolin against lipopolysaccharides (LPS)-induced endometritis has not yet been explored. A total of eighty female Kunming mice were randomly assigned into four treatment groups (n = 20). Following a successful initiation of the endometritis model by LPS, Luteolin was intraperitoneally administered three times, at six-hour intervals between each injection in the Luteolin groups. The histopathological findings revealed that Luteolin significantly alleviated uterine injury induced by LPS. Moreover, Luteolin suppressed the synthesis of pro-inflammatory mediators [interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α] while promoting the synthesis of an anti-inflammatory mediator (IL-10) altered by LPS. Furthermore, Luteolin significantly mitigated the LPS-induced oxidative stress by scavenging malondialdehyde (MDA) and reactive oxygen species (ROS), accumulation and boosting the capacity of antioxidant enzyme activities such as superoxide dismutase 1 (SOD1), catalase (CAT), and glutathione peroxidase 1 (Gpx1) in the uterine tissue of mice. Additionally, injection of Luteolin markedly increased the expression of Toll-like receptors (TLR) 4 both at mRNA and protein levels under LPS stimulation. Western blotting and ELISA findings demonstrated that Luteolin suppressed the activation of the NF-κB pathway in response to LPS exposure in the uterine tissue of mice. Notably, Luteolin enhanced the anti-oxidant defense system by activating the Nrf2 signaling pathway under LPS exposure in the uterine tissue of mice. Conclusively, our findings demonstrated that Luteolin effectively alleviated LPS-induced endometritis via modulation of TLR4-associated Nrf2 and NF-κB signaling pathways.


Asunto(s)
Lipopolisacáridos , Luteolina , Estrés Oxidativo , Luteolina/farmacología , Luteolina/uso terapéutico , Animales , Femenino , Ratones , Estrés Oxidativo/efectos de los fármacos , Endometritis/tratamiento farmacológico , Escherichia coli , Antiinflamatorios/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo , Útero/efectos de los fármacos , Útero/patología , Antioxidantes/farmacología , FN-kappa B/metabolismo , Inflamación/tratamiento farmacológico , Animales no Consanguíneos
12.
BMC Plant Biol ; 24(1): 240, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570817

RESUMEN

Apple is an important fruit crop that is always in demand due to its commercial and nutraceutical value. Also, the requirement for quality planting material for this fruit crop for new plantations is increasing continuously. In-vitro propagation is an alternative approach, which may help to produce genetically identical high grade planting material. In this study, for the first time, an efficient and reproducible propagation protocol has been established for apple root stock MM 104 via axillary bud. Culturing axillary buds on Murashige and Skoog apple rootstock (MM 104) resulted in better in-vitro propagation. (MS) basal medium supplemented with 3.0% (w/v) sucrose and 0.8% (w/v) agar. The axillary buds were established in MS basal medium with BA (5.0 µM), NAA (1.0 µM) and further used to establish invitro propagation protocol. Plant Growth Regulators (PGRs), BA (1.0 µM) in combination with NAA (1.0 µM) was found most efficient for shoot multiplication (100%) and produced 9.8 shoots/explants with an average shoot length of (2.4 ± cm). All the shoots produced roots in 0.1 µM IBA with a 5-day dark period. Acclimatization of in-vitro raised plantlets was obtained with vermiculite: perlite: sand: soil (2:2:1:1) resulting in 76% survival under field conditions. The study showed that the use of axillary bud is efficient for multiple-shoot production of apple rootstock (MM 104). This is the first comprehensive report on in-vitro growth of apple root stock MM 104 with an assessment of genetic stability using DNA fingerprinting profiles based on Inter Simple Sequence Repeats (ISSR) and Start Codon Targeted (SCoT). The genetic stability of in-vitro-produced plants, as determined by SCoT and ISSR primers, demonstrated genetic closeness to the mother plant.


Asunto(s)
Malus , Malus/genética , Codón Iniciador , Reguladores del Crecimiento de las Plantas , Frutas , Repeticiones de Microsatélite
13.
Sci Rep ; 14(1): 9871, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38684775

RESUMEN

The Plasmodium is responsible for malaria which poses a major health threat, globally. This study is based on the estimation of the relative abundance of mosquitoes, and finding out the correlations of meteorological parameters (temperature, humidity and rainfall) with the abundance of mosquitoes. In addition, this study also focused on the use of nested PCR (species-specific nucleotide sequences of 18S rRNA genes) to explore the Plasmodium spp. in female Anopheles. In the current study, the percentage relative abundance of Culex mosquitoes was 57.65% and Anopheles 42.34% among the study areas. In addition, the highest number of mosquitoes was found in March in district Mandi Bahauddin at 21 °C (Tmax = 27, Tmin = 15) average temperature, 69% average relative humidity and 131 mm rainfall, and these climatic factors were found to affect the abundance of the mosquitoes, directly or indirectly. Molecular analysis showed that overall, 41.3% of the female Anopheles pools were positive for genus Plasmodium. Among species, the prevalence of Plasmodium (P.) vivax (78.1%) was significantly higher than P. falciparum (21.9%). This study will be helpful in the estimation of future risk of mosquito-borne diseases along with population dynamic of mosquitoes to enhance the effectiveness of vector surveillance and control programs.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , Plasmodium , Reacción en Cadena de la Polimerasa , Animales , Anopheles/parasitología , Anopheles/genética , Mosquitos Vectores/parasitología , Mosquitos Vectores/genética , Reacción en Cadena de la Polimerasa/métodos , Femenino , Plasmodium/genética , Plasmodium/aislamiento & purificación , Malaria/epidemiología , Malaria/parasitología , Malaria/transmisión , ARN Ribosómico 18S/genética , Culex/parasitología , Culex/genética , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/genética
14.
Sci Rep ; 14(1): 5650, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453987

RESUMEN

High-altitude environments present formidable challenges for survival and reproduction, with organisms facing limited oxygen availability and scarce nutrient resources. The yak (Bos grunniens), indigenous to the Tibetan Plateau, has notably adapted to these extreme conditions. This study delves into the genomic basis of the yak's adaptation, focusing on the positive selection acting on genes involved in nutrient assimilation pathways. Employing techniques in comparative genomics and molecular evolutionary analyses, we selected genes in the yak that show signs of positive selection associated with nutrient metabolism, absorption, and transport. Our findings reveal specific genetic adaptations related to nutrient metabolism in harsh climatic conditions. Notably, genes involved in energy metabolism, oxygen transport, and thermoregulation exhibited signs of positive selection, suggesting their crucial role in the yak's successful colonization of high-altitude regions. The study also sheds light on the yak's immune system adaptations, emphasizing genes involved in response to various stresses prevalent at elevated altitudes. Insights into the yak's genomic makeup provide valuable information for understanding the broader implications of high-altitude adaptations in mammalian evolution. They may contribute to efforts in enhancing livestock resilience to environmental challenges.


Asunto(s)
Altitud , Genoma , Animales , Bovinos , Genómica , Evolución Molecular , Oxígeno , Mamíferos
15.
Microb Pathog ; 189: 106571, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341107

RESUMEN

Nanomaterials containing tungsten (TNMs), characterized by diverse nanostructures had been extensively used in biomedical sector. Despite numerous reports focusing on TNM applications in specific biomedical areas, there is a noticeable absence of comprehensive studies that focused on detailed characterization of nanomaterials along with their biological applications. The present work described the structural, morphological, and antimicrobial properties of tungsten oxide (WO3) nanoparticles coated by antibiotics (nanobiotics), and their application on single and mixed bacterial culture. The nanobiotics included in this study were WO3 coated with ampicillin (W+A), WO3 coated with penicillin (P+W), and WO3 coated with ciprofloxacin (C+W). Techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray spectroscopy (EDX), Fourier transforms infrared spectroscopy (FTIR), Rrman spectroscopy, and UV-visible spectroscopy were used to characterize synthesized nanoparticles. The minimum inhibitory concentration of C+W nanobiotic against S. aureus, E. coli, and mixed culture (S. aureus +E. coli) was lower than that of P+W and A+W. The impact of incubation period showed significant differences for each of nanobiotic against S. aureus, E. coli, and mixed culture. However, there were also non-significant differences among incubation periods for antibacterial activity of nanobiotics. It was pertinent to note that percentage variation in susceptibility of S. aureus with respect to mixed culture remained higher as compared to E. coli, indicating it stronger candidate imposing resistance. This paper thus suggested the strategy of coating of antibiotics with with WO3 nanoparticles as an ideal combination for resistance modulation against single and mixed culture bacteria.


Asunto(s)
Infecciones Bacterianas , Nanopartículas del Metal , Óxidos , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Tungsteno/farmacología , Tungsteno/química , Escherichia coli , Staphylococcus aureus , Ciprofloxacina/farmacología , Bacterias , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana , Nanopartículas del Metal/química , Difracción de Rayos X
16.
Sci Rep ; 14(1): 3590, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351259

RESUMEN

COVID-19 appeared as a highly contagious disease after its outbreak in December 2019 by the virus, named SARS-CoV-2. The threat, which originated in Wuhan, China, swiftly became an international emergency. Among different genomic products, spike protein of virus plays a crucial role in the initiation of the infection by binding to the human lung cells, therefore, SARS-CoV-2's spike protein is a promising therapeutic target. Using a combination of a structure-based virtual screening and biochemical assay, this study seeks possible therapeutic candidates that specifically target the viral spike protein. A database of ~ 850 naturally derived compounds was screened against SARS-CoV-2 spike protein to find natural inhibitors. Using virtual screening and inhibitory experiments, we identified acetyl 11-keto-boswellic acid (AKBA) as a promising molecule for spike protein, which encouraged us to scan the rest of AKBA derivatives in our in-house database via 2D-similarity searching. Later 19 compounds with > 85% similarity with AKBA were selected and docked with receptor binding domain (RBD) of spike protein. Those hits declared significant interactions at the RBD interface, best possess and excellent drug-likeness and pharmacokinetics properties with high gastrointestinal absorption (GIA) without toxicity and allergenicity. Our in-silico observations were eventually validated by in vitro bioassay, interestingly, 10 compounds (A3, A4, C3, C6A, C6B, C6C, C6E, C6H, C6I, and C6J) displayed significant inhibitory ability with good percent inhibition (range: > 72-90). The compounds C3 (90.00%), C6E (91.00%), C6C (87.20%), and C6D (86.23%) demonstrated excellent anti-SARS CoV-2 spike protein activities. The docking interaction of high percent inhibition of inhibitor compounds C3 and C6E was confirmed by MD Simulation. In the molecular dynamics simulation, we observed the stable dynamics of spike protein inhibitor complexes and the influence of inhibitor binding on the protein's conformational arrangements. The binding free energy ΔGTOTAL of C3 (-38.0 ± 0.08 kcal/mol) and C6E (-41.98 ± 0.08 kcal/mol) respectively indicate a strong binding affinity to Spike protein active pocket. These findings demonstrate that these molecules particularly inhibit the function of spike protein and, therefore have the potential to be evaluated as drug candidates against SARS-CoV-2.


Asunto(s)
COVID-19 , Humanos , Farmacóforo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular
17.
Am J Transl Res ; 15(10): 5997-6014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37969197

RESUMEN

OBJECTIVES: The use of medicinal plants for diabetes treatment is increasing owing to their effectiveness and safety compared to synthetic drugs. Thus, the ameliorative effects of Azanza garckeana (F. Hoffm.) fractions in diabetes-induced dyslipidemia, hepatopathy, and nephropathy in rats were evaluated in this study. METHODS: Rats with alloxan (120 mg/kg body weight (BW))-induced diabetes were randomized into different groups (n=5) and treated with the crude methanolic extract, and fractions (n-hexane, ethyl acetate, and aqueous fractions) of A. garckeana each at 100, 200, and 400 mg/kg BW. Glibenclamide (5 mg/kg BW) was used as a reference drug, and all treatments were administered orally daily for 6 weeks. RESULTS: Our data revealed that treatment with the crude extract caused a dose-dependent hypoglycemic effect of 61.32±3.45%, 76.05±3.05%, and 78.59±5.90% at 100, 200, and 400 mg/kg BW, respectively and improved the BW of the animals. The extract also ameliorated the elevated cholesterol, triglyceride, low-density lipoprotein cholesterol, and increased serum levels of high-density lipoprotein cholesterol compared with untreated control animals. The extract also reversed serum biochemical alterations in aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatinine, total and direct bilirubin, urea, and uric acid that were observed in untreated diabetic rats. Interestingly, the A. garckeana fraction also exhibited significant protection against diabetes-induced dyslipidemia, hepatopathy, and nephropathy in rats, with the ethyl acetate fraction exhibiting a remarkable protective effect. The LC-MS characterisation of the active fraction identified the presence of various phenolic and flavonoid compounds that could be responsible for the bioactivity of the fraction. CONCLUSION: Collectively, this study suggests the potential application of A. garckeana for effective treatment of diabetic nephropathy, with the ethyl acetate fraction of this plant representing a reserve of potential candidates for developing new drugs.

18.
Sci Rep ; 13(1): 18716, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907533

RESUMEN

This study investigated the dynamics in pyrethriod resistance and the presence/frequencies of L1014F knockdown resistance mutant allelles in Culex quinquefasciatus vector populations from Uruan Local Government Area of AkwaIbom State, Southern Nigeria between the months of March and November, 2021. Uruan LGA is among the endemic LGAs for lymphatic filariasis in AkwaIbomState. Female Anopheles mosquitoes from Eman Uruan, Ituk Mbang and Idu Uruan were exposed to permethrin, deltamethrin and alphacypermethrin in CDC insecticide coated bottles for susceptibility bioassay following standard protocols. The mosquitoes were obtained as aquatic forms from the study sites and reared under laboratory conditions to adults. The adult mosquitoes were used for this study. All the mosquitoes used for the insecticide susceptibility bioassay were morphologically identified. Standard Polymerase chain reaction (PCR) was used for authenticating the Culex quinquefasciatus species. A portion of the vgsc (917 bp) gene spanning the entire intron and the exon containing the L1014F mutation associated with knockdown resistance (kdr) in the vectorswere amplified using Allele-SPECIFIC POLYMERASE CHAIN REACTION (AS-PCR) in order to detect target site insensitivity in the vectors from the study sites. Results obtained revealed that vectors from all the study sites were resistant to permethrin insecticide (mortality rate: 18-23%). Suspected resistance (mortality rate: 90-93%) to deltamethrin and low resistance (mortality rate: 82-85%) to alphacypermethrin insecticides were detected. knockdown was more rapid with deltamethrin and alphacypermethrin than with permethrin across the study sites considering their KDT50 and KDT95. The frequency of the resistant phenotypes ranged from 35.14 to 55.3% across the study sites with a net of 45.1% resistant phenotype recorded in this study. The 1014F allelic frequency calculated from Hardy-Weinberg principle for vector populations across the study sites ranged from 0.500 (50.00%) to 0.7763 (77.63%). All populations witnessed significant (p < 0.05) deviations from Hardy-Weinberg equilibrium in the distribution of these alleles. The findings of this study show that there is a tendency to record an entire population of resistant vectors in this study area over time due to natural selection. The public health implication of these findings is that the use of pyrethroid based aerosols, coils, sprays, LLITNs and others for the purpose of controlling vectors of lymphatic filariasis and other diseases may be effort in futility.


Asunto(s)
Anopheles , Culex , Filariasis Linfática , Insecticidas , Piretrinas , Animales , Femenino , Insecticidas/farmacología , Permetrina/farmacología , Culex/genética , Alelos , Resistencia a los Insecticidas/genética , Mosquitos Vectores/genética , Piretrinas/farmacología , Anopheles/genética
19.
Stem Cells Int ; 2023: 6767735, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908315

RESUMEN

Despite its clinical value, cisplatin (CISP) is complicated by marked hepatotoxicity via inducing oxidative stress, inflammatory, and apoptotic pathways. This study aims to explore the protective impact of azilsartan (AZIL), an antihypertensive drug, in addition to adipose tissue-derived mesenchymal stem cells (AD-MSCs) on CISP-induced hepatotoxicity. After characterization and labeling of AD-MSCs by PKH26 dye, 54 Wistar male albino rats were randomly divided into nine groups: I (CONT), II (AZIL.H), III (CISP), IV (CISP + AZIL.L), V (CISP + AZIL.H), VI (CISP + AD-MSCs), VII (CISP + AZIL.L + AD-MSCs), VIII (CISP + AZIL.H + AD-MSCs), and IX (CISP + VITA C). Serum alanine aminotransferase (ALT), alanine aminotransferase (AST), and albumin levels were determined. Assessment of reactive oxygen species, malondialdehyde, and glutathione contents, and superoxide dismutase activity and histopathological evaluations were done on hepatic tissue. Quantitative real-time PCR was utilized to estimate the expression of TNF-α and IL-6 genes. Cell homing of labeled AD-MSCs to the liver tissues was investigated. Hepatic expression of JNK1/2, ERK1/2, p38, Bax, Bcl-2, and cleaved caspase-3 proteins was investigated by western blot analysis. CISP elevated serum ALT and AST activities, reduced albumin level, and remarkably changed the hepatic architecture. It increased the expression TNF-α and IL-6 genes, raised the expression of JNK1/2, ERK1/2, p38, Bax, and cleaved caspase-3 proteins, and diminished the Bcl-2 protein. By contrast, treatment of animals with either AZIL or AD-MSCs dramatically reduced the effects of CISP injection. Moreover, treatment with combination therapy (AZIL.L or H + AD-MSCs) considerably mitigated all previously mentioned alterations superior to AZIL or AD-MSCs alone, which might be attributed to the AZIL-enhanced homing ability of AD-MSCs into the injured liver tissue. In conclusion, the present findings demonstrated that AZIL improves the hepatoprotective potential of AD-MSCs against CISP-induced hepatotoxicity by modulating oxidative stress, mitogen-activated protein kinase, and apoptotic pathways.

20.
Heliyon ; 9(11): e21237, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027664

RESUMEN

Polycystic ovary syndrome (PCOS) is a common hormonal disorder that affects women of reproductive age and is characterized by multiple ovarian cysts, irregular menstrual cycles, and excessive androgen hormone production. The present study aimed to investigate the therapeutic efficacy of melatonin in alleviating PCOS-induced alterations in female Wistar rats. PCOS was induced in female albino rats by administering letrozole at a dose of 1 mg/kg for 21 days. A total of 24 rats were randomly selected and divided into four groups: group I (normal control), group II (melatonin treatment), group III (letrozole treatment), and group IV (melatonin therapy for PCOS rats). Physical parameters (body and uterus weight), hormone profile (LH and FSH), and steroidogenic enzyme activities and an oral glucose test were assessed using standard methods. Histological analysis was performed using hematoxylin and eosin staining. The results demonstrated that exogenous melatonin administration significantly improved PCOS symptoms in rats, including reduced body weight gain, changes in organ weight/body weight index, blood glucose level, percentage diestrus phase, testosterone, estradiol, progesterone, and LH/FSH ratio, as well as 3ß-HSD and 17ß-HSD enzyme activity. Histopathological findings revealed well-developed follicles, decreased cystic follicles, and increased antral follicles, Graafian follicles, and corpus luteum in PCOS rats treated with melatonin. These positive outcomes suggest that exogenous melatonin may hold promise as a valuable remedy for PCOS conditions in female rats. Further research is warranted to fully elucidate the underlying mechanisms and potential clinical applications of melatonin in the context of PCOS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA