RESUMEN
BACKGROUND: Injuries to the anterior cruciate ligament (ACL), Kaplan fibers (KFs), anterolateral capsule/ligament (C/ALL), and lateral meniscus posterior root (LMPR) have been separately linked to anterolateral instability. PURPOSE: To investigate the contributions of the ACL, KFs, C/ALL, and LMPR to knee stability and to measure instabilities resulting from their injury. STUDY DESIGN: Controlled laboratory study. METHODS: Ten fresh-frozen human knees were tested robotically to determine restraints of knee laxity at 0° to 90° of flexion. An 88-N anterior-posterior force (anterior and posterior tibial translation), 5-N·m internal-external rotation, and 8-N·m valgus-varus torque were imposed and intact kinematics recorded. The kinematics were replayed after sequentially cutting the structures (order varied) to calculate their contributions to stability. Another 10 knees were tested in a kinematics rig with optical tracking to measure instabilities after sequentially cutting the structures across 0° to 100° of flexion. One- and 2-way repeated-measures analyses of variance with Bonferroni correction were used to find significance (P < .05) for the robotic and kinematics tests. RESULTS: The ACL was the primary restraint for anterior tibial translation; other structures were insignificant (<10% contribution). The KFs and C/ALL resisted internal rotation, reaching 44% ± 23% (mean ± SD; P < .01) and 14% ± 13% (P < .05) at 90°. The LMPR resisted valgus but not internal rotation. Anterior tibial translation increased after ACL transection (P < .001) and after cutting the lateral structures from 70° to 100° (P < .05). Pivot-shift loading increased anterolateral rotational instability after ACL transection from 0° to 40° (P < .05) and further after cutting the lateral structures from 0° to 100° (P < .01). CONCLUSION: The anterolateral complex acts as a functional unit to provide rotatory stability. The ACL is the primary stabilizer for anterior tibial translation. The KFs are the most important internal rotation restraint >30° of flexion. Combined KFs + C/ALL injury substantially increased anterolateral rotational instability while isolated injury of either did not. LMPR deficiency did not cause significant instability with the ACL intact. CLINICAL RELEVANCE: This study is a comprehensive biomechanical sectioning investigation of the knee stability contributions of the ACL, anterolateral complex, and LMPR and the instability after their transection. The ACL is significant in controlling internal rotation only in extension. In flexion, the KFs are dominant, synergistic with the C/ALL. LMPR tear has an insignificant effect with the ACL intact.
Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Inestabilidad de la Articulación , Humanos , Ligamento Cruzado Anterior/cirugía , Meniscos Tibiales , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos , Articulación de la Rodilla/cirugía , Rango del Movimiento Articular , Inestabilidad de la Articulación/cirugía , Fenómenos Biomecánicos , CadáverRESUMEN
BACKGROUND: Little scientific evidence is available regarding the effect of knee joint line obliquity (JLO) before and after coronal realignment osteotomy. HYPOTHESES: Higher JLO would lead to abnormal relative position of the femur on the tibia, a shift of the joint contact areas, and elevated joint contact pressures. STUDY DESIGN: Descriptive laboratory study. METHODS: 10 fresh-frozen human cadaveric knees (age, 59 ± 5 years) were axially loaded to 1500 N in a materials testing machine with the joint line tilted 0°, 4°, 8°, and 12° varus ("downhill" medially) and valgus, at 0° and 20° of knee flexion. The mechanical compression axis was aligned to the center of the tibial plateau. Contact pressure and contact area were recorded by pressure sensors inserted between the tibia and femur below the menisci. Changes in relative femoral and tibial position in the coronal plane were obtained by an optical tracking system. RESULTS: Both medial and lateral JLO caused significant tibiofemoral subluxation and pressure distribution changes. Medial (varus) JLO caused the femur to subluxate medially down the coronal slope of the tibial plateau, and vice versa for lateral (valgus) downslopes (P < .01), giving a 6-mm range of subluxation. The areas of peak pressure moved 12 mm and 8 mm across the medial and lateral condyles, onto the downhill meniscus and the "uphill" tibial spine. Changes in JLO had only small effects on maximum contact pressures. CONCLUSION: A 4° change of JLO during load bearing caused significant mediolateral tibiofemoral subluxation. The femur slid down the slope of the tibial plateau to abut the tibial eminence and also to rest on the downhill meniscus. This caused large movements of the tibiofemoral contact pressures across each compartment. CLINICAL RELEVANCE: These results provide important information for understanding the consequences of creating coronal JLO and for clinical practice in terms of osteotomy planning regarding the effect on JLO. This information provides guidance regarding the choice of single- or double-level osteotomy. Excessive JLO alteration may cause abnormal tibiofemoral joint articulation and chondral or meniscal loading.
Asunto(s)
Menisco , Tibia , Fenómenos Biomecánicos , Cadáver , Fémur , Humanos , Articulación de la Rodilla/cirugía , Persona de Mediana EdadRESUMEN
BACKGROUND: Biomechanical studies on anterior cruciate ligament (ACL) injuries and reconstructions are based on ACL transection instead of realistic injury trauma. PURPOSE: To replicate an ACL injury in vitro and compare the laxity that occurs with that after an isolated ACL transection injury before and after ACL reconstruction. STUDY DESIGN: Controlled laboratory study. METHODS: Nine paired knees were ACL injured or ACL transected. For ACL injury, knees were mounted in a rig that imposed tibial anterior translation at 1000 mm/min to rupture the ACL at 22.5° of flexion, 5° of internal rotation, and 710 N of joint compressive force, replicating data published on clinical bone bruise locations. In contralateral knees, the ACL was transected arthroscopically at midsubstance. Both groups had ACL reconstruction with bone-patellar tendon-bone graft. Native, ACL-deficient, and reconstructed knee laxities were measured in a kinematics rig from 0° to 100° of flexion with optical tracking: anterior tibial translation (ATT), internal rotation (IR), anterolateral (ATT + IR), and pivot shift (IR + valgus). RESULTS: The ACL ruptured at 26 ± 5 mm of ATT and 1550 ± 620 N of force (mean ± SD) with an audible spring-back tibiofemoral impact with 5o of valgus. ACL injury and transection increased ATT (P < .001). ACL injury caused greater ATT than ACL transection by 1.4 mm (range, 0.4-2.2 mm; P = .033). IR increased significantly in ACL-injured knees between 0° and 30° of flexion and in ACL transection knees from 0° to 20° of flexion. ATT during the ATT + IR maneuver was increased by ACL injury between 0° and 80° and after ACL transection between 0° and 60°. Residual laxity persisted after ACL reconstruction from 0° to 40° after ACL injury and from 0° to 20° in the ACL transection knees. ACL deficiency increased ATT and IR in the pivot-shift test (P < .001). The ATT in the pivot-shift increased significantly at 0° to 20° after ACL transection and 0° to 50° after ACL injury, and this persisted across 0° to 20° and 0° to 40° after ACL reconstruction. CONCLUSION: This study developed an ACL injury model in vitro that replicated clinical ACL injury as evidenced by bone bruise patterns. ACL injury caused larger increases of laxity than ACL transection, likely because of damage to adjacent tissues; these differences often persisted after ACL reconstruction. CLINICAL RELEVANCE: This in vitro model created more realistic ACL injuries than surgical transection, facilitating future evaluation of ACL reconstruction techniques.
Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Inestabilidad de la Articulación , Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/cirugía , Fenómenos Biomecánicos , Cadáver , Humanos , Inestabilidad de la Articulación/cirugía , Articulación de la Rodilla/cirugía , Rango del Movimiento Articular , RotaciónRESUMEN
PURPOSE: Revision constrained-condylar total knee arthroplasty (CCK-TKA) is often used to provide additional mechanical constraint after failure of a primary TKA. However, it is unknown how much this translates to a reliance on soft-tissue support. The aim of this study was therefore to compare the laxity of a native knee to the CCK-TKA implanted state and quantify how medial soft-tissues stabilise the knee following CCK-TKA. METHODS: Ten intact cadaveric knees were tested in a robotic system at 0°, 30°, 60° and 90° flexion with ± 90 N anterior-posterior force, ± 8 Nm varus-valgus and ± 5 Nm internal-external torques. A fixed-bearing CCK-TKA was implanted and the laxity tests were repeated with the soft tissues intact and after sequential cutting. The deep and superficial medial collateral ligaments (dMCL, sMCL) and posteromedial capsule (PMC) were sequentially transected and the percentage contributions of each structure to restraining the applied loads were calculated. RESULTS: Implanting a CCK-TKA did not alter anterior-posterior laxity from that of the original native knee, but it significantly decreased internal-external and varus-valgus rotational laxity (p < 0.05). Post CCK-TKA, the sMCL restrained 34% of the tibial displacing load in anterior drawer, 16% in internal rotation, 17% in external rotation and 53% in valgus, across the flexion angles tested. The dMCL restrained 11% of the valgus rotation moment. CONCLUSIONS: With a fully-competent sMCL in-vitro, a fixed-bearing CCK-TKA knee provided more rotational constraint than the native knee. The robotic test data showed that both the soft-tissues and the semi-constrained implant restrained rotational knee laxity. Therefore, in clinical practice, a fixed-bearing CCK-TKA knee could be indicated for use in a knee with lax, less-competent medial soft tissues. LEVEL OF EVIDENCE: Controlled laboratory study.
Asunto(s)
Artroplastia de Reemplazo de Rodilla/métodos , Tejido Conectivo/fisiología , Articulación de la Rodilla/fisiopatología , Articulación de la Rodilla/cirugía , Anciano , Fenómenos Biomecánicos , Cadáver , Femenino , Humanos , Inestabilidad de la Articulación/fisiopatología , Inestabilidad de la Articulación/cirugía , Ligamentos Articulares/fisiopatología , Ligamentos Articulares/cirugía , Masculino , Rango del Movimiento Articular , Reoperación , Rotación , Tibia/fisiopatología , Tibia/cirugía , TorqueRESUMEN
INTRODUCTION: The fabella is a sesamoid bone embedded in the tendon of the lateral head of the gastrocnemius. It is the only bone in the human body to increase in prevalence in the last 100 years. As the fabella can serve as an origin/insertion for muscles, tendons, and/or ligaments (e.g., the oblique popliteal and fabellofibular ligaments), temporal changes in fabella prevalence could lead to temporal changes in "standard" knee anatomy. The aim of this study was to investigate unique myological changes to the posterolateral corner knee associated with ossified fabella presence and perform a systematic review to contextualize our results. METHODS: Thirty-three fresh frozen cadaveric knees were considered. As the knees were all used for previous experimentation, the knees were in variable levels of preservation. Those with adequate preservation were used to determine ossified fabella presence/absence. When ossified fabellae were present, unique myologies associated with the fabella were recorded. A systematic review was performed on the double-headed popliteus to investigate possible correlations between this anatomical variant and the fabella. RESULTS: Of the 33 knees, 30 preserved enough soft tissue to determine fabella presence/absence: 16/30 knees had fabellae (five cartilaginous and 11 ossified). Eight of the eleven knees with ossified fabellae retained enough soft tissue to investigate the posterolateral knee anatomy. Of these, 4/8 exhibited unique myological changes. One knee had a double-headed popliteus muscle where one head originated from the medial side of a large, bulbous fabella. A systematic review revealed double-headed popliteus muscles are rare, but individuals are 3.7 times more likely to have a fabella if they have a double-headed popliteus. Another knee had a large, thick ligament stretching from the lateral edge of the fabella to the inferoposterior edge of the lateral femoral epicondyle, deep to the lateral collateral ligament (LCL) and near the popliteal sulcus. We found no mention of such a ligament in the literature and refer to it here as the "femorofabellar ligament". In all four knees, the plantaris and lateral gastrocnemius appeared to share a common tendinous origin, and the fabella was located at/near the junction of these muscles. In the case of the double-headed popliteus, the fabella clearly served as an origin for the plantaris. CONCLUSIONS: Despite being found in an average of 36.80% of human knees, most standard anatomical models fail to account for the fabella and/or the unique myological changes associated with fabella presence. Although our sample is small, these data highlight aspects of human biological variability generally not considered when creating generalized anatomical models. Further work is needed to identify additional changes associated with ossified fabellae and the functional consequences of omitting these changes from models.
RESUMEN
PURPOSE: To define the length-change patterns of the superficial medial collateral ligament (sMCL), deep MCL (dMCL), and posterior oblique ligament (POL) across knee flexion and with applied anterior and rotational loads, and to relate these findings to their functions in knee stability and to surgical repair or reconstruction. METHODS: Ten cadaveric knees were mounted in a kinematics rig with loaded quadriceps, ITB, and hamstrings. Length changes of the anterior and posterior fibres of the sMCL, dMCL, and POL were recorded from 0° to 100° flexion by use of a linear displacement transducer and normalised to lengths at 0° flexion. Measurements were repeated with no external load, 90 N anterior draw force, and 5 Nm internal and 5 Nm external rotation torque applied. RESULTS: The anterior sMCL lengthened with flexion (p < 0.01) and further lengthened by external rotation (p < 0.001). The posterior sMCL slackened with flexion (p < 0.001), but was lengthened by internal rotation (p < 0.05). External rotation lengthened the anterior dMCL fibres by 10% throughout flexion (p < 0.001). sMCL release allowed the dMCL to become taut with valgus rotation (p < 0.001). The anterior and posterior POL fibres slackened with flexion (p < 0.001), but were elongated by internal rotation (p < 0.001). CONCLUSION: The structures of the medial ligament complex react differently to knee flexion and applied loads. Structures attaching posterior to the medial epicondyle are taut in extension, whereas the anterior sMCL, attaching anterior to the epicondyle, is tensioned during flexion. The anterior dMCL is elongated by external rotation. These data offer the basis for MCL repair and reconstruction techniques regarding graft positioning and tensioning.
Asunto(s)
Articulación de la Rodilla/cirugía , Ligamentos Articulares/cirugía , Ligamento Colateral Medial de la Rodilla/cirugía , Anciano , Fenómenos Biomecánicos , Cadáver , Femenino , Músculos Isquiosurales/fisiopatología , Humanos , Articulación de la Rodilla/fisiopatología , Ligamentos Articulares/fisiopatología , Masculino , Ligamento Colateral Medial de la Rodilla/fisiopatología , Persona de Mediana Edad , Rango del Movimiento Articular , Procedimientos de Cirugía Plástica/métodos , Rotación , TorqueRESUMEN
PURPOSE: To compare the fixation strength and loads on insertion of a titanium alloy interference screw with a modified tip against a conventional titanium interference screw. METHODS: Slippage of bovine digital extensor tendons (as substitutes for human tendon grafts) under cyclic loading and interference fixation strength under a pullout test were recorded in 10 cadaveric knees, with 2 tunnels drilled in each femur and tibia to provide pair-wise comparisons between the modified-tip screw (MS) and conventional screw (CS). To analyze screw insertion, 10 surgeons blindly inserted pairs of the MS and CS into bone-substitute blocks (with polyester shoelaces as graft substitutes), with insertion loads measured using a force/torque sensor. RESULTS: No differences were found between the MS and CS either in graft slippage from the femur (P = .661) or tibia (P = .950) or in ultimate load to failure from the femur (P = .952) or tibia (P = .126). On insertion, the MS required less axial force application (78 ± 38 N, P = .001) and fewer attempted turns (2 ± 1, P < .001) to engage with the bone tunnel than the CS (99 ± 43 N and 4 ± 4, respectively). In 90% of the paired insertion tests, the screw identified by the surgeon as being easier to initially insert was the MS. CONCLUSIONS: The MS was found to be easier to engage with the bone tunnel and initially insert than the CS while still achieving similar immediate postsurgical fixation strength. CLINICAL RELEVANCE: The study shows that screw designs can be improved to ease insertion into a bone tunnel, which should reduce any likelihood of ligament reconstruction graft damage.
RESUMEN
PURPOSE: To compare knee kinematics before and after anterior cruciate ligament ACL reconstruction (ACL-R) using hamstring graft (HG) and a double-stranded iliotibial tract graft attached to Gerdy's tubercle (providing an extra-articular anterolateral tenodesis) (named the modified iliotibial tract graft = MIT). METHOD: Eighteen cadaveric knees were tested in a 6 degree of freedom kinematics rig. An optical tracking system recorded kinematics of the knee from 0 to 80 degrees of flexion applying no load, internal/external rotation (IR/ER), valgus/varus rotation (VGR/VRR), simulated pivot shift (SPS), anterior translation (AT) and posterior translation loads. The knee was tested before and after resection of the ACL and the anterolateral ligament (ALL), respectively; then after HG-ACL-R and MIT-ACL-R. Grafts were fixed at 20° of flexion. Results were compared to the intact knee. RESULTS: ACL resection resulted in a significant increase in AT (p < 0.05) over the entire range of motion, peaking at 20° of flexion, mean difference 6.6 ± 2.25 mm (p = 0.0007). ACL-R with HG-ACL and MIT-ACL restored AT. Resection of the ALL increased IR in the fully extended knee, mean difference 2.4 ± 2.1° (p = 0.024). When compared to the intact knee and the knee after HG-ACL-R, MIT-ACL-R knee reduced IR/SPS significantly (p < 0.05) in deep flexion angles (60°-80°), peaking at 80° of flexion. The MIT-ACL-R caused significantly less VRR at 80° flexion (p = 0.02). CONCLUSION: MIT-ACL-R restored AT equally to the HG-ACL-R. The MIT-ACL-R reduced IR and SPS in deep flexion, resulting in overconstraint. MIT-ACL-R can be used as an alternative to standard reconstruction methods.
Asunto(s)
Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos , Fascia Lata/trasplante , Inestabilidad de la Articulación/cirugía , Ligamento Colateral Medial de la Rodilla/lesiones , Ligamento Colateral Medial de la Rodilla/cirugía , Tenodesis/métodos , Ligamento Cruzado Anterior/cirugía , Fenómenos Biomecánicos , Cadáver , Tendones Isquiotibiales/trasplante , Humanos , Masculino , Persona de Mediana Edad , Rango del Movimiento Articular , RotaciónRESUMEN
PURPOSE: An anterior cruciate ligament (ACL) injury is often combined with injury to the lateral extra-articular structures, which may cause a combined anterior and rotational laxity. It was hypothesised that addition of a 'monoloop' lateral extra-articular tenodesis (mLET) to an ACL reconstruction would restore anteroposterior, internal rotation and pivot-shift laxities better than isolated ACL reconstruction in combined injuries. METHOD: Twelve cadaveric knees were tested, using an optical tracking system to record the kinematics through 0°-100° of knee flexion with no load, anterior and posterior translational forces (90 N), internal and external rotational torques (5 Nm), and a combination of an anterior translational (90 N) plus internal rotational load (5 Nm). They were tested intact, after sectioning the ACL, sectioning anterolateral ligament (ALL), iliotibial band (ITB) graft harvest, releasing deep ITB fibres, hamstrings tendon ACL reconstruction, mLET combined with ACL reconstruction, and isolated mLET. Two-way repeated-measures ANOVA compared laxity data across knee states and flexion angles. When differences were found, paired t tests with Bonferroni correction were performed. RESULTS: In the ACL-deficient knee, cutting the ALL significantly increased anterior laxity only at 20°-30°, and only significantly increased internal rotation at 50°. Additional deep ITB release significantly increased anterior laxity at 40°-90° and caused a large increase of internal rotation at 20°-100°. Isolated ACL reconstruction restored anterior drawer, but significant differences remained in internal rotation at 30°-100°. After adding an mLET there were no remaining differences with anterior translation or internal rotation compared to the intact knee. With the combined injury, isolated mLET allowed abnormal anterior translation and rotation to persist. CONCLUSIONS: Cutting the deep fibres of the ITB caused large increases in tibial internal rotation laxity across the range of knee flexion, while cutting the ALL alone did not. With ACL deficiency combined with anterolateral deficiency, ACL reconstruction alone was insufficient to restore native knee rotational laxity. However, combining a 'monoloop' lateral extra-articular tenodesis with ACL reconstruction did restore native knee laxity.
Asunto(s)
Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos , Inestabilidad de la Articulación/cirugía , Rodilla/fisiopatología , Tenodesis/métodos , Anciano , Reconstrucción del Ligamento Cruzado Anterior/efectos adversos , Fenómenos Biomecánicos , Cadáver , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rango del Movimiento Articular , Rotación , Tenodesis/efectos adversos , TorqueRESUMEN
Little information is available to surgeons regarding how the lateral structures prevent instability in the replaced knee. The aim of this study was to quantify the lateral soft-tissue contributions to stability following cruciate-retaining total knee arthroplasty (CR TKA). Nine cadaveric knees were tested in a robotic system at full extension, 30°, 60°, and 90° flexion angles. In both native and CR implanted states, ±90 N anterior-posterior force, ±8 Nm varus-valgus, and ±5 Nm internal-external torque were applied. The anterolateral structures (ALS, including the iliotibial band), the lateral collateral ligament (LCL), the popliteus tendon complex (Pop T), and the posterior cruciate ligament (PCL) were transected and their relative contributions to stabilizing the applied loads were quantified. The LCL was found to be the primary restraint to varus laxity (an average 56% across all flexion angles), and was significant in internal-external rotational stability (28% and 26%, respectively) and anterior drawer (16%). The ALS restrained 25% of internal rotation, while the PCL was significant in posterior drawer only at 60° and 90° flexion. The Pop T was not found to be significant in any tests. Therefore, the LCL was confirmed as the major lateral structure in CR TKA stability throughout the arc of flexion and deficiency could present a complex rotational laxity that cannot be overcome by the other passive lateral structures or the PCL. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1902-1909, 2017.
Asunto(s)
Artroplastia de Reemplazo de Rodilla/métodos , Articulación de la Rodilla/fisiología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Inestabilidad de la Articulación , Masculino , Persona de Mediana Edad , RotaciónRESUMEN
PURPOSE: The aim of this study was to quantify the medial soft tissue contributions to stability following constrained condylar (CC) total knee arthroplasty (TKA) and determine whether a medial reconstruction could restore stability to a soft tissue-deficient, CC-TKA knee. METHODS: Eight cadaveric knees were mounted in a robotic system and tested at 0°, 30°, 60°, and 90° of flexion with ±50 N anterior-posterior force, ±8 Nm varus-valgus, and ±5 Nm internal-external torque. The deep and superficial medial collateral ligaments (dMCL, sMCL) and posteromedial capsule (PMC) were transected and their relative contributions to stabilising the applied loads were quantified. After complete medial soft tissue transection, a reconstruction using a semitendinosus tendon graft was performed, and the effect on kinematic behaviour under equivocal conditions was measured. RESULTS: In the CC-TKA knee, the sMCL was the major medial restraint in anterior drawer, internal-external, and valgus rotation. No significant differences were found between the rotational laxities of the reconstructed knee to the pre-deficient state for the arc of motion examined. The relative contribution of the reconstruction was higher in valgus rotation at 60° than the sMCL; otherwise, the contribution of the reconstruction was similar to that of the sMCL. CONCLUSION: There is contention whether a CC-TKA can function with medial deficiency or more constraint is required. This work has shown that a CC-TKA may not provide enough stability with an absent sMCL. However, in such cases, combining the CC-TKA with a medial soft tissue reconstruction may be considered as an alternative to a hinged implant.
Asunto(s)
Artroplastia de Reemplazo de Rodilla/métodos , Tejido Conectivo/fisiología , Tejido Conectivo/cirugía , Articulación de la Rodilla/fisiología , Articulación de la Rodilla/cirugía , Anciano , Artroplastia de Reemplazo de Rodilla/efectos adversos , Fenómenos Biomecánicos , Cadáver , Femenino , Humanos , Inestabilidad de la Articulación/fisiopatología , Masculino , Persona de Mediana Edad , Rango del Movimiento Articular , Rotación , Tendones/trasplante , TorqueRESUMEN
PURPOSE: The aim of this study was to quantify the contributions of medial soft tissues to stability following cruciate-retaining (CR) or posterior-stabilised (PS) total knee arthroplasty (TKA). METHODS: Using a robotic system, eight cadaveric knees were subjected to ±90-N anterior-posterior force, ±5-Nm internal-external and ±8-Nm varus-valgus torques at various flexion angles. The knees were tested intact and then with CR and PS implants, and successive cuts of the deep and superficial medial collateral ligaments (dMCL, sMCL) and posteromedial capsule (PMC) quantified the percentage contributions of each structure to restraining the applied loads. RESULTS: In implanted knees, the sMCL restrained valgus rotation (62 % across flexion angles), anterior-posterior drawer (24 and 10 %, respectively) and internal-external rotation (22 and 37 %). Changing from CR TKA to PS TKA increased the load on the sMCL when resisting valgus loads. The dMCL restrained 11 % of external and 13 % of valgus rotations, and the PMC was significant at low flexion angles. CONCLUSIONS: This work has shown that medial release in the varus knee should be minimised, as it may inadvertently result in a combined laxity pattern. There is increasing interest in preserving constitutional varus in TKA, and this work argues for preservation of the sMCL to afford the surgeon consistent restraint and maintain a balanced knee for the patient.
Asunto(s)
Artroplastia de Reemplazo de Rodilla/efectos adversos , Inestabilidad de la Articulación/fisiopatología , Articulación de la Rodilla/fisiopatología , Articulación de la Rodilla/cirugía , Ligamento Colateral Medial de la Rodilla/fisiopatología , Ligamento Colateral Medial de la Rodilla/cirugía , Anciano , Anciano de 80 o más Años , Artroplastia de Reemplazo de Rodilla/instrumentación , Cadáver , Femenino , Humanos , Prótesis de la Rodilla , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/fisiopatología , Rango del Movimiento Articular , Rotación , TorqueRESUMEN
BACKGROUND: Anterolateral rotatory instability (ALRI) may result from combined anterior cruciate ligament (ACL) and lateral extra-articular lesions, but the roles of the anterolateral structures remain controversial. PURPOSE: To determine the contribution of each anterolateral structure and the ACL in restraining simulated clinical laxity in both the intact and ACL-deficient knee. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 16 knees were tested using a 6 degrees of freedom robot with a universal force-moment sensor. The system automatically defined the path of unloaded flexion/extension. At different flexion angles, anterior-posterior, internal-external, and internal rotational laxity in response to a simulated pivot shift were tested. Eight ACL-intact and 8 ACL-deficient knees were tested. The kinematics of the intact/deficient knee was replayed after transecting/resecting each structure of interest; therefore, the decrease in force/torque reflected the contribution of the transected/resected structure in restraining laxity. Data were analyzed using repeated-measures analyses of variance and paired t tests. RESULTS: For anterior translation, the intact ACL was clearly the primary restraint. The iliotibial tract (ITT) resisted 31% ± 6% of the drawer force with the ACL cut at 30° of flexion; the anterolateral ligament (ALL) and anterolateral capsule resisted 4%. For internal rotation, the superficial layer of the ITT significantly restrained internal rotation at higher flexion angles: 56% ± 20% and 56% ± 16% at 90° for the ACL-intact and ACL-deficient groups, respectively. The deep layer of the ITT restrained internal rotation at lower flexion angles, with 26% ± 9% and 33% ± 12% at 30° for the ACL-intact and ACL-deficient groups, respectively. The other anterolateral structures provided no significant contribution. During the pivot-shift test, the ITT provided 72% ± 14% of the restraint at 45° for the ACL-deficient group. The ACL and other anterolateral structures made only a small contribution in restraining the pivot shift. CONCLUSION: The ALL and anterolateral capsule had a minor role in restraining internal rotation; the ITT was the primary restraint at 30° to 90° of flexion. CLINICAL RELEVANCE: The ITT showed large contributions in restraining anterior subluxation of the lateral tibial plateau and tibial internal rotation, which constitute pathological laxity in ALRI. In cases with ALRI, an ITT injury should be suspected and kept in mind if an extra-articular procedure is performed.
Asunto(s)
Ligamento Cruzado Anterior/patología , Inestabilidad de la Articulación/patología , Articulación de la Rodilla/patología , Tibia/patología , Anciano , Anciano de 80 o más Años , Lesiones del Ligamento Cruzado Anterior , Fenómenos Biomecánicos , Cadáver , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rango del Movimiento Articular , Rotación , TorqueRESUMEN
PURPOSE: The aim of this review was to identify a reliable sequential medial release protocol for restoration of soft tissue balance in total knee arthroplasty of the varus osteoarthritic knee and to allow for improved intraoperative decision-making. METHOD: Current medial release sequences and applicability based upon pre-operative deformity have been reviewed. Furthermore, risks associated with over release, and the necessity of medial release, are discussed. RESULTS: The different medial release sequences are discussed in relation to pre-operative deformity, along with potential complications associated with medial release. It was found that release sequences may include the deep and superficial components of the medial collateral ligament, the posteromedial capsule, the posterior oblique ligament, the pes anserinus (pes A), and tendons of the semimembranosus and medial gastrocnemius muscle. The sequences described were found to vary substantially between studies, and very few studies had systematically quantified the effect of each release on balance. CONCLUSION: While medial release is the standard intraoperative mode of balancing, there is a lack of evidence to support current methods. The correct method for defining intraoperatively the sequence, extent and magnitude of releases required remains ill-defined. It could be argued that the classic extensive medial release may be unnecessary and may be associated with iatrogenic injury to the pes A and saphenous nerve, instability and abnormal knee kinematics. Minimal medial release may allow for improved soft tissue balancing leading ultimately to improved functional outcome. LEVEL OF EVIDENCE: V (expert opinion).
Asunto(s)
Artroplastia de Reemplazo de Rodilla/métodos , Articulación de la Rodilla/cirugía , Ligamento Colateral Medial de la Rodilla/cirugía , Osteoartritis de la Rodilla/cirugía , Protocolos Clínicos , Toma de Decisiones , Humanos , Rodilla/fisiopatología , Rodilla/cirugía , Articulación de la Rodilla/fisiopatologíaRESUMEN
Patients with total knee arthroplasties (TKAs) continue to report dissatisfaction in functional outcome. Stability is a major factor contributing to functionality of TKAs. Implants with single-radius (SR) femoral components are proposed to increase stability throughout the arc of flexion. Using computer navigation and loaded cadaveric legs, we characterized the "envelope of laxity" (EoL) offered by a SR cruciate retaining (CR)-TKA compared with that of the native knee through the arc of flexion in terms of anterior drawer, varus/valgus stress, and internal/external rotation. In both the native knee and the TKA laxity increased with increasing knee flexion. Laxities measured in the three planes of motion were generally comparable between the native knee and TKA from 0° to 110° of flexion. Our results indicate that the SR CR-TKA offers appropriate stability in the absence of soft tissue deficiency.
Asunto(s)
Artroplastia de Reemplazo de Rodilla , Inestabilidad de la Articulación/fisiopatología , Articulación de la Rodilla/fisiología , Rango del Movimiento Articular/fisiología , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Cadáver , Femenino , Humanos , Articulación de la Rodilla/cirugía , Masculino , Persona de Mediana Edad , Cirugía Asistida por Computador , Soporte de Peso/fisiologíaRESUMEN
BACKGROUND: Tibiofemoral instability is a common reason for total knee arthroplasty failure, and may be attributed to soft tissue deficiency and incorrect ligament balancing. There are many different designs of implant with varying levels of constraint to overcome this instability; however there is little advice for surgeons to assess which is suitable for a specific patient, and soft tissue balance testing during arthroplasty is very subjective. METHOD: The current theories on primary and secondary soft tissue restraints to anterior/posterior, varus/valgus, and internal/external rotational motion of the knee are discussed. The paper reviews biomechanics literature to evaluate instability in the intact and implanted knee. FINDINGS: The paper highlights important intra- and extra-capsular structures in the knee and describes the techniques used by clinicians to assess instability perioperatively. In vitro cadaveric studies were found to be a very useful tool in comparing different implants and contributions of different soft tissues. INTERPRETATION: In vitro cadaveric studies can be utilised in helping less experienced surgeons with soft tissue releases and determining the correct implant. For this to happen, more biomechanical studies must be done to show the impact of release sequences on implanted cadavers, as well as determining if increasingly constrained implants restore the stability of the knee to pre-deficient conditions.