RESUMEN
Kupffer cells (KCs) are localized in liver sinusoids but extend pseudopods to parenchymal cells to maintain their identity and serve as the body's central bacterial filter. Liver cirrhosis drastically alters vascular architecture, but how KCs adapt is unclear. We used a mouse model of liver fibrosis and human tissue to examine immune adaptation. Fibrosis forced KCs to lose contact with parenchymal cells, down-regulating "KC identity," which rendered them incapable of clearing bacteria. Commensals stimulated the recruitment of monocytes through CD44 to a spatially distinct vascular compartment. There, recruited monocytes formed large aggregates of multinucleated cells (syncytia) that expressed phenotypical KC markers and displayed enhanced bacterial capture ability. Syncytia formed via CD36 and were observed in human cirrhosis as a possible antimicrobial defense that evolved with fibrosis.
Asunto(s)
Infecciones de Transmisión Sanguínea , Células Gigantes , Macrófagos del Hígado , Cirrosis Hepática , Animales , Humanos , Ratones , Células Gigantes/inmunología , Células Gigantes/microbiología , Macrófagos del Hígado/inmunología , Macrófagos del Hígado/microbiología , Cirrosis Hepática/inmunología , Cirrosis Hepática/microbiología , Cirrosis Hepática/patología , Infecciones de Transmisión Sanguínea/inmunología , Modelos Animales de EnfermedadRESUMEN
The human liver is a complex organ made up of multiple specialized cell types that carry out key physiological functions. An incomplete understanding of liver biology limits our ability to develop therapeutics to prevent chronic liver diseases, liver cancers, and death as a result of organ failure. Recently, single-cell modalities have expanded our understanding of the cellular phenotypic heterogeneity and intercellular cross-talk in liver health and disease. This review summarizes these findings and looks forward to highlighting new avenues for the application of single-cell genomics to unravel unknown pathogenic pathways and disease mechanisms for the development of new therapeutics targeting liver pathology. As these technologies mature, their integration into clinical data analysis will aid in patient stratification and in developing treatment plans for patients suffering from liver disease.
Asunto(s)
Hepatopatías , Hepatocitos/metabolismo , Humanos , Hepatopatías/metabolismoRESUMEN
The critical functions of the human liver are coordinated through the interactions of hepatic parenchymal and non-parenchymal cells. Recent advances in single-cell transcriptional approaches have enabled an examination of the human liver with unprecedented resolution. However, dissociation-related cell perturbation can limit the ability to fully capture the human liver's parenchymal cell fraction, which limits the ability to comprehensively profile this organ. Here, we report the transcriptional landscape of 73,295 cells from the human liver using matched single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq). The addition of snRNA-seq enabled the characterization of interzonal hepatocytes at a single-cell resolution, revealed the presence of rare subtypes of liver mesenchymal cells, and facilitated the detection of cholangiocyte progenitors that had only been observed during in vitro differentiation experiments. However, T and B lymphocytes and natural killer cells were only distinguishable using scRNA-seq, highlighting the importance of applying both technologies to obtain a complete map of tissue-resident cell types. We validated the distinct spatial distribution of the hepatocyte, cholangiocyte, and mesenchymal cell populations by an independent spatial transcriptomics data set and immunohistochemistry. Conclusion: Our study provides a systematic comparison of the transcriptomes captured by scRNA-seq and snRNA-seq and delivers a high-resolution map of the parenchymal cell populations in the healthy human liver.
Asunto(s)
Hígado , Análisis de la Célula Individual , Núcleo Celular/genética , Humanos , Análisis de Secuencia de ARN , Transcriptoma/genéticaRESUMEN
A rate-limiting step for circulating tumor cells to colonize distant organ sites is their ability to locate a microenvironmental niche that supports their survival and growth. This can be achieved by features intrinsic to the tumor cells and/or by the conditioning of a "premetastatic" niche. To determine if pulmonary inflammation promotes the latter, we initiated models for inflammatory asthma, hypersensitivity pneumonitis, or bleomycin-induced sterile inflammation before introducing tumor cells with low metastatic potential into the circulation. All types of inflammation increased the end-stage metastatic burden of the lungs 14 days after tumor cell inoculation without overtly affecting tumor extravasation. Instead, the number and size of early micrometastatic lesions found within the interstitial tissues 96 hours after tumor cell inoculation were increased in the inflamed lungs, coincident with increased tumor cell survival and the presence of nearby inflammation-induced monocyte-derived macrophages (MoDM; CD11b+CD11c+). Remarkably, the adoptive transfer of these MoDM was sufficient to increase lung metastasis in the absence of inflammation. These inflammation-induced MoDM secrete a number of growth factors and cytokines, one of which is hepatocyte growth factor (HGF), that augmented tumor cell survival under conditions of stress in vitro. Importantly, blocking HGF signaling with the cMET inhibitor capmatinib abolished inflammation-induced early micrometastatic lesion formation in vivo. These findings indicate that inflammation-induced MoDM and HGF in particular increase the efficiency of early metastatic colonization in the lung by locally preconditioning the microenvironment. IMPLICATIONS: Inflammation preconditions the distant site microenvironment to increase the metastatic potential of tumor cells that arrive there.
Asunto(s)
Factor de Crecimiento de Hepatocito/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Animales , Humanos , Ratones , Metástasis de la Neoplasia , Microambiente TumoralRESUMEN
Single-cell transcriptomics can profile thousands of cells in a single experiment and identify novel cell types, states and dynamics in a wide variety of tissues and organisms. Standard experimental protocols and analysis workflows have been developed to create single-cell transcriptomic maps from tissues. This tutorial focuses on how to interpret these data to identify cell types, states and other biologically relevant patterns with the objective of creating an annotated map of cells. We recommend a three-step workflow including automatic cell annotation (wherever possible), manual cell annotation and verification. Frequently encountered challenges are discussed, as well as strategies to address them. Guiding principles and specific recommendations for software tools and resources that can be used for each step are covered, and an R notebook is included to help run the recommended workflow. Basic familiarity with computer software is assumed, and basic knowledge of programming (e.g., in the R language) is recommended.
Asunto(s)
Anotación de Secuencia Molecular/métodos , Análisis de la Célula Individual , Transcriptoma , Perfilación de la Expresión Génica , Genómica/métodos , HumanosRESUMEN
RATIONALE: Bone marrow transplantation (BMT) is used frequently to study the role of hematopoietic cells in atherosclerosis, but aortic arch lesions are smaller in mice after BMT. OBJECTIVE: To identify the earliest stage of atherosclerosis inhibited by BMT and elucidate potential mechanisms. METHODS AND RESULTS: Ldlr-/- mice underwent total body γ-irradiation, bone marrow reconstitution, and 6-week recovery. Atherosclerosis was studied in the ascending aortic arch and compared with mice without BMT. In BMT mice, neutral lipid and myeloid cell topography were lower in lesions after feeding a cholesterol-rich diet for 3, 6, and 12 weeks. Lesion coalescence and height were suppressed dramatically in mice post-BMT, whereas lateral growth was inhibited minimally. Targeted radiation to the upper thorax alone reproduced the BMT phenotype. Classical monocyte recruitment, intimal myeloid cell proliferation, and apoptosis did not account for the post-BMT phenotype. Neutral lipid accumulation was reduced in 5-day lesions, thus we developed quantitative assays for LDL (low-density lipoprotein) accumulation and paracellular leakage using DiI-labeled human LDL and rhodamine B-labeled 70 kD dextran. LDL accumulation was dramatically higher in the intima of Ldlr-/- relative to Ldlr+/+ mice, and was inhibited by injection of HDL mimics, suggesting a regulated process. LDL, but not dextran, accumulation was lower in mice post-BMT both at baseline and in 5-day lesions. Since the transcript abundance of molecules implicated in LDL transcytosis was not significantly different in the post-BMT intima, transcriptomics from whole aortic arch intima, and at single-cell resolution, was performed to give insights into pathways modulated by BMT. CONCLUSIONS: Radiation exposure inhibits LDL entry into the aortic intima at baseline and the earliest stages of atherosclerosis. Single-cell transcriptomic analysis suggests that LDL uptake by endothelial cells is diverted to lysosomal degradation and reverse cholesterol transport pathways. This reduces intimal accumulation of lipid and impacts lesion initiation and growth.
Asunto(s)
Aterosclerosis/metabolismo , Rayos gamma , Lipoproteínas LDL/metabolismo , Túnica Íntima/efectos de la radiación , Animales , Aorta/metabolismo , Aorta/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Receptores de LDL/deficiencia , Receptores de LDL/genética , Transcriptoma , Túnica Íntima/metabolismoRESUMEN
There is a tremendous focus on the application of nanomaterials for the treatment of cancer. Nonprimate models are conventionally used to assess the biomedical utility of nanomaterials. However, these animals often lack an intact immunological background, and the tumors in these animals do not develop spontaneously. We introduce a preclinical woodchuck hepatitis virus-induced liver cancer model as a platform for nanoparticle (NP)-based in vivo experiments. Liver cancer development in these out-bred animals occurs as a result of persistent viral infection, mimicking human hepatitis B virus-induced HCC development. We highlight how this model addresses key gaps associated with other commonly used tumor models. We employed this model to (1) track organ biodistribution of gold NPs after intravenous administration, (2) examine their subcellular localization in the liver, (3) determine clearance kinetics, and (4) characterize the identity of hepatic macrophages that take up NPs using RNA-sequencing (RNA-seq). We found that the liver and spleen were the primary sites of NP accumulation. Subcellular analyses revealed accumulation of NPs in the lysosomes of CD14+ cells. Through RNA-seq, we uncovered that immunosuppressive macrophages within the woodchuck liver are the major cell type that take up injected NPs. The woodchuck-HCC model has the potential to be an invaluable tool to examine NP-based immune modifiers that promote host anti-tumor immunity.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Animales , Modelos Animales de Enfermedad , Humanos , Hígado , Marmota , Distribución TisularRESUMEN
In pregnancy, uterine natural killer cells (uNK) play essential roles in coordinating uterine angiogenesis, blood vessel remodeling and promoting maternal tolerance to fetal tissue. Deviances from a normal uterine microenvironment are thought to modify uNK function(s) by limiting their ability to establish a healthy pregnancy. While maternal obesity has become a major health concern due to associations with adverse effects on fetal and maternal health, our understanding into how obesity contributes to poor pregnancy disorders is unknown. Given the importance of uNK in pregnancy, this study examines the impact of obesity on uNK function in women in early pregnancy. We identify that uNK from obese women show a greater propensity for cellular activation, but this difference does not translate into increased effector killing potential. Instead, uNK from obese women express an altered repertoire of natural killer receptors, including an imbalance in inhibitory KIR2DL1 and activating KIR2DS1 receptors that favors HLA-C2-directed uNK activation. Notably, we show that obesity-related KIR2DS1 skewing potentiates TNFα production upon receptor crosslinking. Together, these findings suggest that maternal obesity modifies uNK activity by altering the response toward HLA-C2 antigen and KIR2DL1/2DS1-controlled TNFα release. Furthermore, this work identifies alterations in uNK function resulting from maternal obesity that may impact early developmental processes important in pregnancy health.