Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35630727

RESUMEN

Vicilin has nutraceutical potential and different noteworthy medicative health-promoting biotic diversions, and it is remarkable against pathogenic microorganisms and insects. In this study, Vigna aconitifolia vicilin (VacV) has been identified and characterized from the seed of Vigna aconitifolia (Jacq.) Marechal (Moth beans). LC-MS/MS analysis of VacV provided seven random fragmented sequences comprising 238 residues, showing significant homology with already reported Vigna radiata vicilin (VraV). VacV was purified using ammonium sulfate precipitation (60%) followed by size exclusion chromatography on Hi-Load 16/60 Superdex 200 pg column and anion-exchange chromatography (Hi trap Q FF column). Purified VacV showed a major ~50 kDa band and multiple lower bands on 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under both reduced and non-reduced conditions. After all, a three-dimensional molecular structure of VacV was predicted, which showed ß-sheeted molecular conformation similar to crystallographic structure of VraV. All Vicilins from V. aconitifolia and other plants were divided into six sub-groups by phylogenetic analysis, and VacV shared a high degree of similarity with vicilins of Vigna radiata, Pisum sativum, Lupinus albus, Cicer arietinum and Glycine max. Additionally, VacV (20 µg) has significant growth inhibition against different pathogenic bacteria along strong antifungal activity (50 µg). Likewise, VacV (3.0 mg) produced significant growth reduction in Rice Weevil Sitophilus oryzae larvae after 9 days compared with control. Furthermore, by using MMT assay, the cytotoxicity effect of VacV on the growth of HepG2 liver cancerous cells was tested. VacV showed cytotoxicity against the HepG-2 line and the acquired value was 180 µg after 48 h. Finally, we performed molecular docking against caspase-3 protein (PDB ID: 3DEI) for VacV bioactive receptor interface residues. Hence, our results reveal that VacV, has nutraceutical potential and moth beans can be used as a rich resource of functional foods.


Asunto(s)
Antiinfecciosos , Insecticidas , Vigna , Antibacterianos/análisis , Antiinfecciosos/análisis , Antiinfecciosos/farmacología , Cromatografía Liquida , Insecticidas/análisis , Insecticidas/farmacología , Simulación del Acoplamiento Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Almacenamiento de Semillas , Semillas/química , Espectrometría de Masas en Tándem
2.
Insect Mol Biol ; 31(5): 568-584, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35499809

RESUMEN

Insects are highly reliant on their active olfactory system in which odorant binding proteins play a role to selectivity and sensitivity during odour perception and processing. This study sets out to determine whether and to which extent the antennal loaded SaveOBP10 in English grain aphid Sitobion avenae, contributes in olfactory processing during host selection. To understand this possible relationship, we purified the SaveOBP10 recombinant protein and performed fluorescence ligand binding tests, molecular docking, RNA interference (RNAi) and behavioural trials. The results showed that SaveOBP10 had strong binding affinities (Ki ≤5 µM) with most of wheat plant volatiles at pH 5.0 as compared to pH 7.4. In Y-tube olfactometer bioassays, the S. avenae was attracted behaviourally towards pentadecane, butylated hydroxytoluene, tetradecane and ß-caryophyllene however repelled by naphthalene. After RNAi of SaveOBP10, the aphid showed nonattraction towards ß-caryophyllene and nonsignificant behavioural response to pentadecane, butylated hydroxytoluene and tetradecane. Furthermore, the three-dimensional structure modelling and molecular docking of SaveOBP10 were performed to the volatiles with high binding abilities. Together these findings indicate that SaveOBP10 can bind more strongly to the volatiles that involved in S. avenae behaviour regulation and possibly will contribute effectively in S. avenae integrated pest management.


Asunto(s)
Áfidos , Animales , Áfidos/genética , Hidroxitolueno Butilado , Simulación del Acoplamiento Molecular , Odorantes , Interferencia de ARN
3.
Front Plant Sci ; 12: 799318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095971

RESUMEN

In the past and present, human activities have been involved in triggering global warming, causing drought stresses that affect animals and plants. Plants are more defenseless against drought stress; and therefore, plant development and productive output are decreased. To decrease the effect of drought stress on plants, it is crucial to establish a plant feedback mechanism of resistance to drought. The drought reflex mechanisms include the physical stature physiology and biochemical, cellular, and molecular-based processes. Briefly, improving the root system, leaf structure, osmotic-balance, comparative water contents and stomatal adjustment are considered as most prominent features against drought resistance in crop plants. In addition, the signal transduction pathway and reactive clearance of oxygen are crucial mechanisms for coping with drought stress via calcium and phytohormones such as abscisic acid, salicylic acid, jasmonic acid, auxin, gibberellin, ethylene, brassinosteroids and peptide molecules. Furthermore, microorganisms, such as fungal and bacterial organisms, play a vital role in increasing resistance against drought stress in plants. The number of characteristic loci, transgenic methods and the application of exogenous substances [nitric oxide, (C28H48O6) 24-epibrassinolide, proline, and glycine betaine] are also equally important for enhancing the drought resistance of plants. In a nutshell, the current review will mainly focus on the role of phytohormones and related mechanisms involved in drought tolerance in various crop plants.

4.
Insects ; 11(6)2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512728

RESUMEN

Riptortus pedestris (Heteroptera: Alydidae), an important crop pest, is capable of entering reproductive adult diapause under short-day photoperiods. Though the physiological aspects of adult diapause have been well studied in this species, little is known about its morphological development. In the present study, the adult females are discriminated as prediapause and prereproductive based on the absence and presence of mature oocytes in ovarioles, respectively. We also measured the morphological development of vitellarium and lateral oviduct in females, and the accessory gland, ejaculatory duct, and testes in males of both prereproductive and prediapause adults. Our results revealed that there is a clear significant difference in the reproductive development of prediapause and prereproductive insects. Moreover, the internal morphology of reproductive organs was suppressed in prediapausebugs compared to prereproductive bugs, and the insects developedthe reproductive parts as newly emerged adults. The above findings provide basic knowledge on the characterization of diapause and reproductive R. pedestris adults, which would be applicable to molecular investigations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA