Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5415, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926345

RESUMEN

The claustrum has been linked to attention and sleep. We hypothesized that this reflects a shared function, determining responsiveness to stimuli, which spans the axis of engagement. To test this hypothesis, we recorded claustrum population dynamics from male mice during both sleep and an attentional task ('ENGAGE'). Heightened activity in claustrum neurons projecting to the anterior cingulate cortex (ACCp) corresponded to reduced sensory responsiveness during sleep. Similarly, in the ENGAGE task, heightened ACCp activity correlated with disengagement and behavioral lapses, while low ACCp activity correlated with hyper-engagement and impulsive errors. Chemogenetic elevation of ACCp activity reduced both awakenings during sleep and impulsive errors in the ENGAGE task. Furthermore, mice employing an exploration strategy in the task showed a stronger correlation between ACCp activity and performance compared to mice employing an exploitation strategy which reduced task complexity. Our results implicate ACCp claustrum neurons in restricting engagement during sleep and goal-directed behavior.


Asunto(s)
Claustro , Giro del Cíngulo , Neuronas , Sueño , Animales , Giro del Cíngulo/fisiología , Masculino , Sueño/fisiología , Neuronas/fisiología , Neuronas/metabolismo , Ratones , Claustro/fisiología , Ratones Endogámicos C57BL , Conducta Animal/fisiología , Atención/fisiología , Vigilia/fisiología
2.
Cereb Cortex Commun ; 1(1): tgaa062, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34296125

RESUMEN

The claustrum is a thin sheet of neurons enclosed by white matter and situated between the insula and the putamen. It is highly interconnected with sensory, frontal, and subcortical regions. The deep location of the claustrum, with its fine structure, has limited the degree to which it could be studied in vivo. Particularly in humans, identifying the claustrum using magnetic resonance imaging (MRI) is extremely challenging, even manually. Therefore, automatic segmentation of the claustrum is an invaluable step toward enabling extensive and reproducible research of the anatomy and function of the human claustrum. In this study, we developed an automatic algorithm for segmenting the human dorsal claustrum in vivo using high-resolution MRI. Using this algorithm, we segmented the dorsal claustrum bilaterally in 1068 subjects of the Human Connectome Project Young Adult dataset, a publicly available high-resolution MRI dataset. We found good agreement between the automatic and manual segmentations performed by 2 observers in 10 subjects. We demonstrate the use of the segmentation in analyzing the covariation of the dorsal claustrum with other brain regions, in terms of macro- and microstructure. We identified several covariance networks associated with the dorsal claustrum. We provide an online repository of 1068 bilateral dorsal claustrum segmentations.

3.
Curr Biol ; 28(17): 2752-2762.e7, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30122531

RESUMEN

A barrage of information constantly assaults our senses, of which only a fraction is relevant at any given point in time. However, the neural circuitry supporting the suppression of irrelevant sensory distractors is not completely understood. The claustrum, a circuit hub with vast cortical connectivity, is an intriguing brain structure, whose restrictive anatomy, thin and elongated, has precluded functional investigation. Here, we describe the use of Egr2-CRE mice to access genetically defined claustral neurons. Utilizing conditional viruses for anterograde axonal labeling and retrograde trans-synaptic tracing, we validated this transgenic model for accessing the claustrum and extended the known repertoire of claustral input/output connectivity. Addressing the function of the claustrum, we inactivated CLEgr2+ neurons, chronically as well as acutely, in mice performing an automated two-alternative forced-choice behavioral task. Strikingly, inhibition of CLEgr2+ neurons did not significantly impact task performance under varying delay times and cue durations, but revealed a selective role for the claustrum in supporting performance in the presence of an irrelevant auditory distractor. Further investigation of behavior, in the naturalistic maternal pup-retrieval task, replicated the result of sensitization to an auditory distractor following inhibition of CLEgr2+ neurons. Initiating investigation into the underlying mechanism, we found that activation of CLEgr2+ neurons modulated cortical sensory processing, suppressing tone representation in the auditory cortex. This functional study, utilizing selective genetic access, implicates the claustrum in supporting resilience to distraction, a fundamental aspect of attention.


Asunto(s)
Atención/fisiología , Ganglios Basales/fisiología , Neuronas/fisiología , Animales , Conducta Animal/fisiología , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Técnicas de Sustitución del Gen , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Endogámicos , Vías Nerviosas/fisiología
4.
J Comp Neurol ; 525(6): 1381-1402, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26973027

RESUMEN

The claustrum is an intriguing brain structure, featuring the highest connectivity per regional volume in the brain. It is a thin and elongated structure enclosed between the striatum and the insular cortex, with widespread reciprocal connections with the sensory modalities and prefrontal cortices. Retinotopic and somatotopic organizations have been described in the claustrum, and anatomical studies in cats, monkeys, and rats have demonstrated topographic organization of cortico-claustral connections. In this study we mapped the projections from cortical modalities (visual, auditory, somatosensory, motor, and olfactory), and prefrontal regions (anterior cingulate cortex and orbitofrontal cortex) to the claustrum in mice. Utilizing expression of a virally encoded synaptic anterograde tracer, AAV-SynaptoTag, followed by 3D reconstruction of the cortical projections, we performed a comprehensive study of the organization of these projections within the mouse claustrum. Our results clearly demonstrate a dorsoventral laminar organization of projections from the sensory cortices to the claustrum, whereas frontal inputs are more extensive and overlap with the inputs from the sensory cortices. In addition, we find evidence supporting a core/shell organization of the claustrum. We propose that the overlap between the frontal inputs and the inputs from the sensory modalities may underlie executive regulation of the communication between the claustrum and the cortical modalities. J. Comp. Neurol. 525:1381-1402, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Ganglios Basales/anatomía & histología , Corteza Cerebral/anatomía & histología , Vías Nerviosas/citología , Animales , Femenino , Imagenología Tridimensional , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL
5.
Trends Neurosci ; 38(8): 486-95, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26116988

RESUMEN

The claustrum is a mysterious thin sheet of neurons lying between the insular cortex and the striatum. It is reciprocally connected with almost all cortical areas, including motor, somatosensory, visual, auditory, limbic, associative, and prefrontal cortices. In addition, it receives neuromodulatory input from subcortical structures. A decade ago, Sir Francis Crick and Christof Koch published an influential review proposing the claustrum as the 'seat of consciousness', spurring a revival of interest in the claustrum. We review the literature on the claustrum, emphasizing recent discoveries, and develop a detailed hypothesis describing a role for the claustrum in the segregation of attention.


Asunto(s)
Atención/fisiología , Ganglios Basales/fisiología , Vías Nerviosas/fisiología , Animales , Modelos Neurológicos , Vías Visuales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA