Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(22): eadn2789, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38809974

RESUMEN

Cell motility universally relies on spatial regulation of focal adhesion complexes (FAs) connecting the substrate to cellular motors. In bacterial FAs, the Adventurous gliding motility machinery (Agl-Glt) assembles at the leading cell pole following a Mutual gliding-motility protein (MglA)-guanosine 5'-triphosphate (GTP) gradient along the cell axis. Here, we show that GltJ, a machinery membrane protein, contains cytosolic motifs binding MglA-GTP and AglZ and recruiting the MreB cytoskeleton to initiate movement toward the lagging cell pole. In addition, MglA-GTP binding triggers a conformational shift in an adjacent GltJ zinc-finger domain, facilitating MglB recruitment near the lagging pole. This prompts GTP hydrolysis by MglA, leading to complex disassembly. The GltJ switch thus serves as a sensor for the MglA-GTP gradient, controlling FA activity spatially.


Asunto(s)
Proteínas Bacterianas , Adhesiones Focales , Guanosina Trifosfato , Adhesiones Focales/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Guanosina Trifosfato/metabolismo , Unión Proteica
2.
EMBO J ; 42(1): e111661, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36345779

RESUMEN

In rod-shaped bacteria, type IV pili (Tfp) promote twitching motility by assembling and retracting at the cell pole. In Myxococcus xanthus, a bacterium that moves in highly coordinated cell groups, Tfp are activated by a polar activator protein, SgmX. However, while it is known that the Ras-like protein MglA is required for unipolar targeting, how SgmX accesses the cell pole to activate Tfp is unknown. Here, we demonstrate that a polar beacon protein, FrzS, recruits SgmX at the cell pole. We identified two main functional domains, including a Tfp-activating domain and a polar-binding domain. Within the latter, we show that the direct binding of MglA-GTP unveils a hidden motif that binds directly to the FrzS N-terminal response regulator (CheY). Structural analyses reveal that this binding occurs through a novel binding interface for response regulator domains. In conclusion, the findings unveil the protein interaction network leading to the spatial activation of Tfp at the cell pole. This tripartite system is at the root of complex collective behaviours in this predatory bacterium.


Asunto(s)
Proteínas Bacterianas , Myxococcus xanthus , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Myxococcus xanthus/metabolismo , Fimbrias Bacterianas/química
3.
Biomol NMR Assign ; 16(2): 219-223, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35445965

RESUMEN

Bacterial cell motility is essential for a range of physiological phenomena such as nutrient sensing, predation, biofilm formation and pathogenesis. One of the most intriguing motilities is bacterial gliding, which is defined as the ability of some bacteria to move across surfaces without an external appendage. In Myxococcus xanthus, gliding motility depends on the assembly of focal adhesion complexes (FAC) which include the Glt mutiprotein complex and allow directional movement of individual cells (A-motility). Within the Glt multiprotein complex, GltJ is one of the key proteins involved in FAC assembly. In this work we report complete backbone and side chain 1H, 13C and 15N chemical shifts of the two cytoplasmic domains of GltJ, GltJ-ZnR (BMRB No. 51104) and GltJ-GYF (BMRB No. 51096). These data provide the first step toward the first high resolution structures of protein domains from the Glt machinery and the atomic level characterization of GltJ cytoplasmic activity during FAC assembly.


Asunto(s)
Myxococcus xanthus , Proteínas Bacterianas/metabolismo , Adhesiones Focales/metabolismo , Movimiento , Myxococcus xanthus/metabolismo , Resonancia Magnética Nuclear Biomolecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA