Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38313274

RESUMEN

Recent failures translating preclinical behavioral treatment effects to positive clinical trial results in humans with Fragile X Syndrome (FXS) support refocusing attention on biological pathways and associated measures, such as electroencephalography (EEG), with strong translational potential and small molecule target engagement. This study utilized guided machine learning to test promising translational EEG measures (resting power and auditory chirp oscillatory variables) in a large heterogeneous sample of individuals with FXS to identify best performing EEG variables for reliably separating individuals with FXS, and genetically-mediated subgroups within FXS, from typically developing controls. Best performing variables included resting relative frontal theta power, all combined whole-head resting power bands, posterior peak alpha frequency (PAF), combined PAF across all measured regions, combined theta, alpha, and gamma power during the chirp, and all combined chirp oscillatory variables. Sub-group analyses best discriminated non-mosaic FXS males via whole-head resting relative power (AUC = .9250), even with data reduced to a 20-channel clinical montage. FXS females were nearly perfectly discriminated by combined theta, alpha, and gamma power during the chirp (AUC = .9522). Results support use of resting and auditory oscillatory tasks to reliably identify neural deficit in FXS, and to identify specific translational targets for genetically-mediated sub-groups, supporting potential points for stratification.

2.
Front Psychol ; 13: 943613, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992482

RESUMEN

Cognitive neuroscience has inspired a number of methodological advances to extract the highest signal-to-noise ratio from neuroimaging data. Popular techniques used to summarize behavioral data include sum-scores and item response theory (IRT). While these techniques can be useful when applied appropriately, item dimensionality and the quality of information are often left unexplored allowing poor performing items to be included in an itemset. The purpose of this study is to highlight how the application of two-stage approaches introduces parameter bias, differential item functioning (DIF) can manifest in cognitive neuroscience data and how techniques such as the multiple indicator multiple cause (MIMIC) model can identify and remove items with DIF and model these data with greater sensitivity for brain-behavior relationships. This was performed using a simulation and an empirical study. The simulation explores parameter bias across two separate techniques used to summarize behavioral data: sum-scores and IRT and formative relationships with those estimated from a MIMIC model. In an empirical study participants performed an emotional identification task while concurrent electroencephalogram data were acquired across 384 trials. Participants were asked to identify the emotion presented by a static face of a child across four categories: happy, neutral, discomfort, and distress. The primary outcomes of interest were P200 event-related potential (ERP) amplitude and latency within each emotion category. Instances of DIF related to correct emotion identification were explored with respect to an individual's neurophysiology; specifically an item's difficulty and discrimination were explored with respect to an individual's average P200 amplitude and latency using a MIMIC model. The MIMIC model's sensitivity was then compared to popular two-stage approaches for cognitive performance summary scores, including sum-scores and an IRT model framework and then regressing these onto the ERP characteristics. Here sensitivity refers to the magnitude and significance of coefficients relating the brain to these behavioral outcomes. The first set of analyses displayed instances of DIF within all four emotions which were then removed from all further models. The next set of analyses compared the two-stage approaches with the MIMIC model. Only the MIMIC model identified any significant brain-behavior relationships. Taken together, these results indicate that item performance can be gleaned from subject-specific biomarkers, and that techniques such as the MIMIC model may be useful tools to derive complex item-level brain-behavior relationships.

3.
J Neurosci Methods ; 371: 109501, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35182604

RESUMEN

BACKGROUND: The Harvard Automatic Processing Pipeline for Electroencephalography (HAPPE) is a computerized EEG data processing pipeline designed for multiple site analysis of populations with neurodevelopmental disorders. This pipeline has been validated in-house by the developers but external testing using real-world datasets remains to be done. NEW METHOD: Resting and auditory event-related EEG data from 29 children ages 3-6 years with Fragile X Syndrome as well as simulated EEG data was used to evaluate HAPPE's noise reduction techniques, data standardization features, and data integration compared to traditional manualized processing. RESULTS: For the real EEG data, HAPPE pipeline showed greater trials retained, greater variance retained through independent component analysis (ICA) component removal, and smaller kurtosis than the manual pipeline; the manual pipeline had a significantly larger signal-to-noise ratio (SNR). For simulated EEG data, correlation between the pure signal and processed data was significantly higher for manually-processed data compared to HAPPE-processed data. Hierarchical linear modeling showed greater signal recovery in the manual pipeline with the exception of the gamma band signal which showed mixed results. COMPARISON WITH EXISTING METHODS: SNR and simulated signal retention was significantly greater in the manually-processed data than the HAPPE-processed data. Signal reduction may negatively affect outcome measures. CONCLUSIONS: The HAPPE pipeline benefits from less active processing time and artifact reduction without removing segments. However, HAPPE may bias toward elimination of noise at the cost of signal. Recommended implementation of the HAPPE pipeline for neurodevelopmental populations depends on the goals and priorities of the research.


Asunto(s)
Síndrome del Cromosoma X Frágil , Algoritmos , Artefactos , Niño , Preescolar , Electroencefalografía/métodos , Humanos , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA