Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39062928

RESUMEN

Extremophilic microorganisms play a key role in understanding how life on Earth originated and evolved over centuries. Their ability to thrive in harsh environments relies on a plethora of mechanisms developed to survive at extreme temperatures, pressures, salinity, and pH values. From a biotechnological point of view, thermophiles are considered a robust tool for synthetic biology as well as a reliable starting material for the development of sustainable bioprocesses. This review discusses the current progress in the biomanufacturing of high-added bioproducts from thermophilic microorganisms and their industrial applications.


Asunto(s)
Microbiología Industrial , Microbiología Industrial/métodos , Biotecnología/métodos , Extremófilos/metabolismo , Extremófilos/fisiología , Bacterias/metabolismo , Archaea/metabolismo
2.
N Biotechnol ; 82: 14-24, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-38688408

RESUMEN

The valorization of lignocellulosic biomass, derived from various bio-waste materials, has received considerable attention as a sustainable approach to improve production chains while reducing environmental impact. Microbial enzymes have emerged as key players in the degradation of polysaccharides, offering versatile applications in biotechnology and industry. Among these enzymes, glycoside hydrolases (GHs) play a central role. Xylanases, in particular, are used in a wide range of applications and are essential for the production of xylose, which can be fermented into bioethanol or find use in many other industries. Currently, fungal secretomes dominate as the main reservoir of lignocellulolytic enzymes, but thermophilic microorganisms offer notable advantages in terms of enzyme stability and production efficiency. Here we present the genomic characterization of Geobacillus stearothermophilus GF16 to identify genes encoding putative enzymes involved in lignocellulose degradation. Thermostable GHs secreted by G. stearothermophilus GF16 were investigated and found to be active on different natural polysaccharides and synthetic substrates, revealing an array of inducible GH activities. In particular, the concentrated secretome possesses significant thermostable xylanase and ß-xylosidase activities (5 ×103 U/L and 1.7 ×105 U/L, respectively), highlighting its potential for application in biomass valorization. We assessed the hemicellulose hydrolysis capabilities of various agri-food wastes using the concentrated secretome of the strain cultivated on xylan. An impressive 300-fold increase in xylose release compared to a commercially available cocktail was obtained with the secretome, underscoring the remarkable efficacy of this approach.


Asunto(s)
Biomasa , Geobacillus stearothermophilus , Polisacáridos , Xilosa , Geobacillus stearothermophilus/enzimología , Geobacillus stearothermophilus/genética , Xilosa/metabolismo , Polisacáridos/metabolismo , Polisacáridos/química , Genómica , Genoma Bacteriano , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/química
3.
Microb Biotechnol ; 17(4): e14449, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38593329

RESUMEN

Bacillus coagulans, recently renamed Weizmannia coagulans, is a spore-forming bacterium that has garnered significant interest across various research fields, ranging from health to industrial applications. The probiotic properties of W. coagulans enhance intestinal digestion, by releasing prebiotic molecules including enzymes that facilitate the breakdown of not-digestible carbohydrates. Notably, some enzymes from W. coagulans extend beyond digestive functions, serving as valuable biotechnological tools and contributing to more sustainable and efficient manufacturing processes. Furthermore, the homofermentative thermophilic nature of W. coagulans renders it an exceptional candidate for fermenting foods and lignocellulosic residues into L-(+)-lactic acid. In this review, we provide an overview of the dual nature of W. coagulans, in functional foods and for the development of bio-based materials.


Asunto(s)
Bacillus coagulans , Alimentos Funcionales , Materiales Biocompatibles/metabolismo , Bacillus coagulans/metabolismo , Fermentación , Biotecnología
4.
Int J Biol Macromol ; 264(Pt 1): 130550, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432267

RESUMEN

A novel endo-1,4-ß-xylanase-encoding gene was identified in Alicyclobacillus mali FL18 and the recombinant protein, named AmXyn, was purified and biochemically characterized. The monomeric enzyme worked optimally at pH 6.6 and 80 °C on beechwood xylan with a specific activity of 440.00 ± 0.02 U/mg and a good catalytic efficiency (kcat/KM = 91.89 s-1mLmg-1). In addition, the enzyme did not display any activity on cellulose, suggesting a possible application in paper biobleaching processes. To develop an enzymatic mixture for xylan degradation, the association between AmXyn and the previously characterized ß-xylosidase AmßXyl, deriving from the same microorganism, was assessed. The two enzymes had similar temperature and pH optima and showed the highest degree of synergy when AmXyn and AmßXyl were added sequentially to beechwood xylan, making this mixture cost-competitive and suitable for industrial use. Therefore, this enzymatic cocktail was also employed for the hydrolysis of wheat bran residue. TLC and HPAEC-PAD analyses revealed a high conversion rate to xylose (91.56 %), placing AmXyn and AmßXyl among the most promising biocatalysts for the saccharification of agricultural waste.


Asunto(s)
Alicyclobacillus , Endo-1,4-beta Xilanasas , Polisacáridos , Xilanos , Xilosidasas , Endo-1,4-beta Xilanasas/química , Xilanos/química , Hidrólisis , Concentración de Iones de Hidrógeno
5.
Appl Microbiol Biotechnol ; 108(1): 155, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244047

RESUMEN

Agri-food residues offer significant potential as a raw material for the production of L-lactic acid through microbial fermentation. Weizmannia coagulans, previously known as Bacillus coagulans, is a spore-forming, lactic acid-producing, gram-positive, with known probiotic and prebiotic properties. This study aimed to evaluate the feasibility of utilizing untreated citrus waste as a sustainable feedstock for the production of L-lactic acid in a one-step process, by using the strain W. coagulans MA-13. By employing a thermophilic enzymatic cocktail (Cellic CTec2) in conjunction with the hydrolytic capabilities of MA-13, biomass degradation was enhanced by up to 62%. Moreover, batch and fed-batch fermentation experiments demonstrated the complete fermentation of glucose into L-lactic acid, achieving a concentration of up to 44.8 g/L. These results point to MA-13 as a microbial cell factory for one-step production of L-lactic acid, by combining cost-effective saccharification with MA-13 fermentative performance, on agri-food wastes. Moreover, the potential of this approach for sustainable valorization of agricultural waste streams is successfully proven. KEY POINTS: • Valorization of citrus waste, an abundant residue in Mediterranean countries. • Sustainable production of the L-( +)-lactic acid in one-step process. • Enzymatic pretreatment is a valuable alternative to the use of chemical.


Asunto(s)
Bacillus coagulans , Ácido Láctico , Ácido Láctico/metabolismo , Bacillus coagulans/metabolismo , Fermentación , Glucosa/metabolismo , Alimentos
6.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256164

RESUMEN

Lignocellulose biomasses (LCB), including spent mushroom substrate (SMS), pose environmental challenges if not properly managed. At the same time, these renewable resources hold immense potential for biofuel and chemicals production. With the mushroom market growth expected to amplify SMS quantities, repurposing or disposal strategies are critical. This study explores the use of SMS for cultivating microbial communities to produce carbohydrate-active enzymes (CAZymes). Addressing a research gap in using anaerobic digesters for enriching microbiomes feeding on SMS, this study investigates microbial diversity and secreted CAZymes under varied temperatures (37 °C, 50 °C, and 70 °C) and substrates (SMS as well as pure carboxymethylcellulose, and xylan). Enriched microbiomes demonstrated temperature-dependent preferences for cellulose, hemicellulose, and lignin degradation, supported by thermal and elemental analyses. Enzyme assays confirmed lignocellulolytic enzyme secretion correlating with substrate degradation trends. Notably, thermogravimetric analysis (TGA), coupled with differential scanning calorimetry (TGA-DSC), emerged as a rapid approach for saccharification potential determination of LCB. Microbiomes isolated at mesophilic temperature secreted thermophilic hemicellulases exhibiting robust stability and superior enzymatic activity compared to commercial enzymes, aligning with biorefinery conditions. PCR-DGGE and metagenomic analyses showcased dynamic shifts in microbiome composition and functional potential based on environmental conditions, impacting CAZyme abundance and diversity. The meta-functional analysis emphasised the role of CAZymes in biomass transformation, indicating microbial strategies for lignocellulose degradation. Temperature and substrate specificity influenced the degradative potential, highlighting the complexity of environmental-microbial interactions. This study demonstrates a temperature-driven microbial selection for lignocellulose degradation, unveiling thermophilic xylanases with industrial promise. Insights gained contribute to optimizing enzyme production and formulating efficient biomass conversion strategies. Understanding microbial consortia responses to temperature and substrate variations elucidates bioconversion dynamics, emphasizing tailored strategies for harnessing their biotechnological potential.


Asunto(s)
Agaricales , Microbiota , Consorcios Microbianos , Biocombustibles , Especificidad por Sustrato , Bacterias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA