Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Carbohydr Polym ; 342: 122421, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048206

RESUMEN

Although fucoidan has potential use as an anti-inflammatory agent, the specific mechanisms by which it influences signaling and immunomodulatory pathways between gut microbiota and Peyer's patches remain unclear. Therefore, the aim of this study was to investigate the therapeutic potential of fucoidan in a dextran sulfate sodium (DSS)-induced mouse model of inflammatory bowel disease (IBD) by examining the effects on gut microbiota and the underlying anti-inflammatory mechanisms. Purified fucoidan, which upon characterization revealed structural fragments comprising →3)-ß-D-Galp-(1→, →4)-α-L-Fucp-(1→, and →3)-α-L-Fucp-(1→ residues with a sulfation at position C2 was used. Treatment of the mice with fucoidan significantly alleviated the symptoms of IBD and restored the diversity of gut microbiota by enhancing the abundance of Bacteroidetes and reducing the proportion of Firmicutes. The administration of fucoidan also elevated levels of short-chain fatty acids while reducing the levels of pro-inflammatory cytokines, including interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ. Most importantly, fucoidan attenuated the expression of integrin α4ß7/MAdCAM-1 and CCL25/CCR9, which are involved in homing intestinal lymphocytes within Peyer's patches. These findings indicate that fucoidan is a promising gut microbiota modulator and an anti-inflammatory agent for IBD.


Asunto(s)
Sulfato de Dextran , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Ganglios Linfáticos Agregados , Polisacáridos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Polisacáridos/farmacología , Polisacáridos/química , Ganglios Linfáticos Agregados/efectos de los fármacos , Ganglios Linfáticos Agregados/inmunología , Ratones , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inmunología , Ratones Endogámicos C57BL , Citocinas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Modelos Animales de Enfermedad , Masculino
2.
Compr Rev Food Sci Food Saf ; 23(4): e13388, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865218

RESUMEN

Consumers are attracted to traditional fermented foods due to their unique flavor and nutritional value. However, the traditional fermentation technique can no longer accommodate the requirements of the food industry. Traditional fermented foods produce hazardous compounds, off-odor, and anti-nutritional factors, reducing product stability. The microbial system complexity of traditional fermented foods resulting from the open fermentation process has made it challenging to regulate these problems by modifying microbial behaviors. Synthetic microbial communities (SynComs) have been shown to simplify complex microbial communities and allow for the targeted design of microbial communities, which has been applied in processing traditional fermented foods. Herein, we describe the theoretical information of SynComs, particularly microbial physiological processes and their interactions. This paper discusses current approaches to creating SynComs, including designing, building, testing, and learning, with typical applications and fundamental techniques. Based on various traditional fermented food innovation demands, the potential and application of SynComs in enhancing the quality of traditional fermented foods are highlighted. SynComs showed superior performance in regulating the quality of traditional fermented foods using the interaction of core microorganisms to reduce the hazardous compounds of traditional fermented foods and improve flavor. Additionally, we presented the current status and future perspectives of SynComs for improving the quality of traditional fermented foods.


Asunto(s)
Fermentación , Alimentos Fermentados , Microbiología de Alimentos , Alimentos Fermentados/microbiología , Microbiota , Calidad de los Alimentos , Bacterias
3.
Int J Biol Macromol ; 257(Pt 2): 128583, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056755

RESUMEN

Globally, penaeid shrimp are the most farmed and traded aquatic organisms, although they are easily susceptible to microbial pathogens. Moreover, there is a desire to increase the nutritional value of shrimp, especially the levels of n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which also possess immunomodulatory and anti-inflammatory properties. Some aquatic animals can synthesize EPA and DHA from dietary plant-sourced alpha-linolenic acid (ALA), but penaeid shrimps' ability to synthesize these n-3 PUFAs is unknown. Here, molecular biology techniques, including gas chromatography-mass spectrometry, qPCR, ELISA, etc., were used to demonstrate that exogenous ALA or Vibrio parahaemolyticus could modulate EPA and DHA levels and immune genes in Penaeus vannamei by inducing key enzymes involved in n-3 PUFAs biosynthesis, such as delta desaturases and elongation of very long-chain fatty acid (ELOVLs). Most importantly, knockdown or inhibition of ∆6 desaturase significantly decreased EPA and DHA levels and immune gene expression even with exogenous ALA treatment, consequently affecting shrimp antibacterial immunity and survival. This study provides new insight into the potential of P. vannamei to synthesize n-3 PUFAs from exogenous ALA or upon bacteria challenge, which could be leveraged to increase their nutritional content and antimicrobial immunity.


Asunto(s)
Ácidos Grasos Omega-3 , Vibrio parahaemolyticus , Animales , Ácido Eicosapentaenoico/farmacología , Ácidos Docosahexaenoicos , Ácido alfa-Linolénico/farmacología , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo
4.
Dev Comp Immunol ; 151: 105087, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37898353

RESUMEN

Hemocyanin is a respiratory protein, it is also a multifunctional immune molecule that plays a vital role against pathogen invasion in shrimp. However, the regulation of hemocyanin gene expression in shrimp hemocytes and the mechanisms involved during pathogen infection remains unclear. Here, we used DNA pull-down followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the Yin Yang 1 transcription factor homolog in Penaeus vannamei (PvYY1) as a key factor that modulates transcription of the small subunit hemocyanin gene of P. vannamei (PvHMCs) in hemocytes during Vibrio parahaemolyticus AHPND (VPAHPND) infection. Bioinformatics analysis revealed that the core promoter region of PvHMCs contains two YY1 motifs. Mutational and oligoprecipitation analyses confirmed that PvYY1 could bind to the YY1 motifs in the PvHMCs core promoter region, while truncation of PvYY1 revealed that the N-terminal domain of PvYY1 is essential for the transactivation of PvHMCs core promoter. Besides, the REPO domain of PvYY1 could repress the activity of the PvHMCs core promoter. Overexpression of PvYY1 significantly activates the promoter activity of PvHMCs core promoter, while PvYY1 knockdown significantly decreases the expression level of PvHMCs in shrimp hemocytes and survival rate of shrimp upon infection with VPAHPND. Our present study provides new insights into the transcriptional regulation of PvHMCs by PvYY1 in shrimp hemocytes during bacteria (VPAHPND) infection.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Animales , Hemocianinas , Proteínas de Artrópodos/genética , Cromatografía Liquida , Yin-Yang , Espectrometría de Masas en Tándem , Inmunidad Innata/genética
5.
Fish Shellfish Immunol ; 145: 109347, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160900

RESUMEN

Hemocyanin is the main respiratory protein of arthropods and is formed by hexameric and/or oligomeric subunits. Due to changes in the living environment and gene rearrangement, various hemocyanin subtypes and subunits evolved in crustaceans. This paper reviews the various hemocyanin subtypes and isoforms in shrimp and analyses published genomic data of sixteen hemocyanin family genes from Litopenaeus vannamei to explore the evolution of hemocyanin genes, subunits, and protein structure. Analysis of hemocyanin subtypes distribution and structure in various tissues was also performed and related to multiple and tissue-specific functions, i.e., immunological activity, immune signaling, phenoloxidase activity, modulation of microbiota homeostasis, and energy metabolism. The functional diversity of shrimp hemocyanin due to molecular polymorphism, transcriptional regulation, alternative splicing, degradation into functional peptides, interaction with other proteins or genes, and structural differences will also be highlighted for future research. Inferences would be drawn from other crustaceans to explain how evolution has changed the structure-function of hemocyanin and its implication for evolutionary research into the multifunctionality of hemocyanin and other related proteins in shrimp.


Asunto(s)
Hemocianinas , Penaeidae , Animales , Isoformas de Proteínas/genética , Péptidos/genética , Empalme Alternativo
6.
Mol Immunol ; 164: 7-16, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37875037

RESUMEN

In mammals, elongation of very long chain fatty acid protein 6 (ELOVL6), a key enzyme in long chain fatty acids elongation, has been reported to regulate other metabolism processes and immunity, including inflammation in vertebrates. However, little is currently known about the ELOVL6 homolog in invertebrates, especially its role in immune response. In this study, the ELOVL6 ortholog in Penaeus vannamei (designated PvELOVL6) was cloned and found to have an open reading frame (ORF) of 435 bp and encode a putative protein of 144 amino acids. Transcripts of PvELOVL6 are constitutively expressed in all shrimp tissues tested and induced in the hepatopancreas and hemocytes by Vibrio parahaemolyticus and Streptococcus iniae. Besides, PvELOVL6 knockdown followed by Vibrio parahaemolyticus challenge revealed that PvELOVL6 regulates the expression of several genes involved in fatty acid metabolism and immunity, including PvLGBP, PvLectin, PvMnSOD, PvProPO, PvFABP, PvLipase, PvCOX and PvGPDH. Moreover, transcript levels of PvELOVL6, fatty acids metabolism-related genes (i.e., PvGPDH, PvFABP, PvPERO and PvSPLA2), and immune-related genes (i.e., PvProPO, PvLectin, PvLGBP, PvLysozyme and PvCatalase) increased after silencing of the sterol regulatory element binding protein (PvSREBP). Thus, PvELOVL6 is involved in immune response and regulated by PvSREBP through an unknown mechanism in penaeid shrimp.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Animales , Proteínas de Artrópodos , Secuencia de Aminoácidos , Secuencia de Bases , Ácidos Grasos , Inmunidad , Mamíferos/genética
7.
Sci Total Environ ; 905: 167073, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37714341

RESUMEN

Agricultural and anthropogenic activities release high ammonia levels into aquatic ecosystems, severely affecting aquatic organisms. Penaeid shrimp can survive high ammonia stress conditions, but the underlying molecular mechanisms are unknown. Here, total hemocyanin and oxyhemocyanin levels decreased in Penaeus vannamei plasma under high ammonia stress. When shrimp were subjected to high ammonia stress for 12 h, 24 hemocyanin (HMC) derived peptides were identified in shrimp plasma, among which one peptide, designated as HMCs27, was chosen for further analysis. Shrimp survival was significantly enhanced after treatment with the recombinant protein of HMCs27 (rHMCs27), followed by high ammonia stress. Transcriptome analysis of shrimp hepatopancreas after treatment with or without rHMCs27 followed by high ammonia stress revealed 973 significantly dysregulated genes, notable among which were genes involved in oxidation and metabolism, such as cytochrome C, catalase (CAT), isocitrate dehydrogenase, superoxide dismutase (SOD), trypsin, chymotrypsin, glutathione peroxidase, glutathione s-transferase (GST), and alanine aminotransferase (ALT). In addition, levels of key biochemical indicators, such as SOD, CAT, and total antioxidant capacity (T-AOC), were significantly enhanced, whereas hepatopancreas malondialdehyde levels and plasma pH, NH3, GST, and ALT levels were significantly decreased after rHMCs27 treatment followed by high ammonia stress. Moreover, high ammonia stress induced hepatopancreas tissue injury and apoptosis, but rHMCs27 treatment ameliorated these effects. Collectively, the current study revealed that in response to high ammonia stress, shrimp generate functional peptides, such as peptide HMCs27 from hemocyanin, which helps to attenuate the ammonia toxicity by enhancing the antioxidant system and the tricarboxylic acid cycle to decrease plasma NH3 levels and pH.


Asunto(s)
Antioxidantes , Penaeidae , Animales , Antioxidantes/metabolismo , Estrés Fisiológico , Hemocianinas/metabolismo , Hemocianinas/farmacología , Penaeidae/fisiología , Amoníaco/metabolismo , Ecosistema , Superóxido Dismutasa/metabolismo , Péptidos/metabolismo
8.
Front Immunol ; 14: 1246181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711612

RESUMEN

Shrimp aquaculture has been seriously affected by acute hepatopancreatic necrosis disease (AHPND), caused by a strain of Vibrio parahaemolyticus that carries the Pir toxin plasmids (V. parahaemolyticus (AHPND)). In this study, the transcription factor, Kruppel homolog 1-like of Peneaus vannamei (PvKr-h1), was significantly induced in shrimp hemocytes after V. parahaemolyticus (AHPND) challenge, suggesting that PvKr-h1 is involved in shrimp immune response. Knockdown of PvKr-h1 followed by V. parahaemolyticus (AHPND) challenge increased bacterial abundance in shrimp hemolymph coupled with high shrimp mortality. Moreover, transcriptome and immunofluorescence analyses revealed that PvKr-h1 silencing followed by V. parahaemolyticus (AHPND) challenge dysregulated the expression of several antioxidant-related enzyme genes, such as Cu-Zu SOD, GPX, and GST, and antimicrobial peptide genes, i.e., CRUs and PENs, and reduced ROS activity and nuclear translocation of Relish. These data reveal that PvKr-h1 regulates shrimps' immune response to V. parahaemolyticus (AHPND) infection by suppressing antioxidant-related enzymes, enhancing ROS production and promoting nuclei import of PvRelish to stimulate antimicrobial peptide genes expression.


Asunto(s)
Vibrio parahaemolyticus , Animales , Antioxidantes , Hemocitos , Especies Reactivas de Oxígeno , Crustáceos , Enfermedad Aguda , Péptidos Antimicrobianos , Necrosis
9.
Front Immunol ; 14: 1241934, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744346

RESUMEN

Besides dividing the organism's immune system into adaptive and innate immunity, it has long been thought that only adaptive immunity can establish immune memory. However, many studies have shown that innate immunity can also build immunological memory through epigenetic reprogramming and modifications to resist pathogens' reinfection, known as trained immunity. This paper reviews the role of mitochondrial metabolism and epigenetic modifications and describes the molecular foundation in the trained immunity of arthropods and mollusks. Mitochondrial metabolism and epigenetic modifications complement each other and play a key role in trained immunity.


Asunto(s)
Artrópodos , Inmunidad Entrenada , Animales , Inmunidad Innata , Moluscos , Inmunidad Adaptativa
10.
Microb Pathog ; 182: 106260, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37467812

RESUMEN

Although Vibrio parahaemolyticus infections cause severe diseases of large yellow croaker (Larimichthys crocea), using antibiotics and other chemical agents to treat these infections could result in antimicrobial resistance, environmental pollution, and other associated problems. This study identified seven peptides from Lacticaseibacillus paracasei fermentation broth using ultra-high-performance liquid chromatography-mass spectrometry and screened antimicrobial peptide Y2Fr (VEIKNGLLKLNGKPLLIR) through its net charge, hydrophobicity and predicted secondary structure. Antibacterial activity analysis revealed that Y2Fr had a minimum inhibitory concentration (MIC) of 125 µg/mL, minimum bactericidal concentration (MBC) of 250 µg/mL against V. parahaemolyticus and a time-kill of 3 h. In a bacterial membrane environment, the secondary structure of peptide Y2Fr changed from a random coil to a ß-sheet to enhance its membrane permeability and binding to bacteria DNA to exert its antibacterial effect. Further molecular docking analysis revealed that peptide Y2Fr could bind to the membrane protein KKI11460.1 and DNA polymerase A0A0L8TVA4 of V. parahaemolyticus through hydrogen bonds. Meanwhile, treatment of Y2Fr with mammalian red blood cells and plasma revealed that it was noncytotoxic, nonhemolytic, and stable under physiological conditions. Thus, peptide Y2Fr has great potential use in treating and preventing infections caused by V. parahaemolyticus or similar bacteria in aquatic animals.


Asunto(s)
Perciformes , Vibrio parahaemolyticus , Animales , Vibrio parahaemolyticus/genética , Lacticaseibacillus , Fermentación , Simulación del Acoplamiento Molecular , Antibacterianos/química , Péptidos/farmacología , Péptidos/metabolismo , Perciformes/metabolismo , Bacterias/metabolismo , Mamíferos/metabolismo
11.
Fish Shellfish Immunol Rep ; 5: 100109, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37448875

RESUMEN

LHPP (Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase) is a protein histidine phosphatase that modulates a hidden posttranslational modification called histidine phosphorylation. LHPP also acts as a tumor suppressor, which plays a pivotal role in various cellular processes. However, whether LHPP participates in the regulation of invertebrate's immunity is still unknown. Here we characterized a LHPP homolog in P. vannamei (designated PvLHPP), with a 807 bp length of open reading frame (ORF) encoding a putative protein of 268 amino acids. Sequence analysis revealed that PvLHPP contains a typical hydrolase 6 and hydrolase-like domain, which was conserved from invertebrate to vertebrate. PvLHPP was ubiquitously expressed in tissues and induced in hemocyte and hepatopancreas by Vibrio parahaemolyticus, Streptococcus iniae and white spot syndrome virus (WSSV) challenge, indicating that PvLHPP participated in the immune responses. Moreover, silencing of PvLHPP followed by V. parahaemolyticus inhibited hemocyte apoptosis. This study enriches our current insight on shrimp immunity, and provides novel perspective to understand immune-regulatory role of PvLHPP.

12.
Foods ; 12(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37174342

RESUMEN

The increasing threat posed by antibiotic-resistant pathogens has prompted a shift to the use of naturally-derived antimicrobial peptides (AMPs) in place of chemical preservatives in controlling foodborne pathogens. In this study, ten peptides were identified from salt-fermented shrimps (Penaeus vannamei) using ultra-performance liquid chromatography-mass spectrometry. One of the peptides, designated PV-Q5 (QVRNFPRGSAASPSALASPR), with most features of an AMP, was further explored and found to possess strong antibacterial activity against Vibrio parahaemolyticus and Escherichia coli, with a minimum inhibitory concentration of 31.25 µg/mL. Moreover, PV-Q5 increased bacterial cell membrane permeability and ruptured bacteria cell membranes, as revealed by transmission electron microscopy. Circular dichroism analysis showed that the conformation of PV-Q5 was a random coil in phosphate-buffered saline and α-helical in sodium dodecyl sulfate, which is conducive for interaction with bacteria cell membranes. These findings indicated that PV-Q5 could find potential use in food preservation to control foodborne pathogenic bacteria.

13.
Mar Drugs ; 21(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36976213

RESUMEN

Many environmental and pathogenic insults induce endoplasmic reticulum (ER) stress in animals, especially in aquatic ecosystems, where these factors are crucial for life. In penaeid shrimp, pathogens and environmental stressors induce hemocyanin expression, but the involvement of hemocyanin in ER stress response is unknown. We demonstrate that in response to pathogenic bacteria (Vibrio parahaemolyticus and Streptococcus iniae), hemocyanin, ER stress proteins (Bip, Xbp1s, and Chop), and sterol regulatory element binding protein (SREBP) are induced to alter fatty acid levels in Penaeus vannamei. Interestingly, hemocyanin interacts with ER stress proteins to modulate SREBP expression, while ER stress inhibition with 4-Phenylbutyric acid or hemocyanin knockdown attenuates the expression of ER stress proteins, SREBP, and fatty acid levels. Contrarily, hemocyanin knockdown followed by tunicamycin treatment (ER stress activator) increased their expression. Thus, hemocyanin mediates ER stress during pathogen challenge, which consequently modulates SREBP to regulate the expression of downstream lipogenic genes and fatty acid levels. Our findings reveal a novel mechanism employed by penaeid shrimp to counteract pathogen-induced ER stress.


Asunto(s)
Penaeidae , Proteínas de Unión a los Elementos Reguladores de Esteroles , Animales , Hemocianinas/genética , Hemocianinas/metabolismo , Penaeidae/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Ecosistema , Estrés del Retículo Endoplásmico , Ácidos Grasos/metabolismo , Bacterias/metabolismo , Proteínas de Choque Térmico/metabolismo
14.
J Immunol ; 210(9): 1396-1407, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36971684

RESUMEN

Posttranslational modifications expand the functions of immune-related proteins, especially during infections. The respiratory glycoprotein, hemocyanin, has been implicated in many other functions, but the role of phosphorylation modification in its functional diversity is not fully understood. In this study, we show that Penaeus vannamei hemocyanin (PvHMC) undergoes phosphorylation modification during bacterial infection. Dephosphorylation of PvHMC mediated by P. vannamei protein phosphatase 2A catalytic increases its in vitro antibacterial activity, whereas phosphorylation by P. vannamei casein kinase 2 catalytic subunit α decreases its oxygen-carrying capacity and attenuates its in vitro antibacterial activity. Mechanistically, we show that Thr517 is a critical phosphorylation modification site on PvHMC to modulate its functions, which when mutated attenuates the action of P. vannamei casein kinase 2 catalytic subunit α and P. vannamei protein phosphatase 2A catalytic, and hence abolishes the antibacterial activity of PvHMC. Our results reveal that phosphorylation of PvHMC modulates its antimicrobial functions in penaeid shrimp.


Asunto(s)
Hemocianinas , Penaeidae , Animales , Hemocianinas/metabolismo , Penaeidae/metabolismo , Quinasa de la Caseína II/metabolismo , Proteína Fosfatasa 2/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo
15.
Dev Comp Immunol ; 140: 104611, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36473550

RESUMEN

In mammals fucosyltransferase 2 (FUT2) plays an important regulatory role in inflammation, bacterial or viral infection, and tumor metastasis. However, the specific role of FUT2 in invertebrate immunity has not been reported. Here, the FUT2 homolog of Penaeus vannamei (designated as PvFUT2) was cloned and found to have a full-length cDNA of 1104 bp with an open reading frame (ORF) encoding 316 amino acids. PvFUT2 is constitutively expressed in all shrimp tissues tested with the highest found in intestines. Moreover, PvFUT2 was induced in the main immune organs (hemocytes and hepatopancreas) of shrimp by Gram-positive (Vibrio parahaemolyticus), Gram-negative (Streptococcus iniae) bacteria and virus (White Spot Syndrome Virus), indicating the involvement of PvFUT2 in shrimp antimicrobial response. Intriguingly, PvFUT2 knockdown with or without pathogen challenge reduced the expression of Pvß-catenin and antimicrobial peptides genes, particularly anti lipopolysaccharide factor and lysozyme. Further analysis revealed that the knockdown of PvFUT2 increased Vibrio abundance in hemolymph and resulted in an increase in shrimp cumulative mortality rate. Thus, during pathogen challenge, the expression of PvFUT2 is induced to regulate ß-catenin and subsequently antimicrobial peptides expression to augment shrimp antimicrobial immune response.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Virus del Síndrome de la Mancha Blanca 1 , Animales , Secuencia de Aminoácidos , Péptidos Antimicrobianos , Proteínas de Artrópodos/metabolismo , Secuencia de Bases , Inmunidad Innata/genética , Filogenia , Virus del Síndrome de la Mancha Blanca 1/fisiología , Galactósido 2-alfa-L-Fucosiltransferasa
16.
Dev Comp Immunol ; 139: 104561, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36183838

RESUMEN

The C-C chemokine receptors (CCRs) family is involved in diverse pathophysiological processes in mammals, such as immune regulation and cancer, but their functions in invertebrates remain enigmatic. Here, two CCR homologs in Penaeus vannamei (designated PvCCR1 and PvCCR5) were characterized and found to share sequence homology with other CCRs and contain the conserved 7TM functional domain. Both PvCCR1 and PvCCR5 were constitutively expressed in healthy shrimp tissues, while their mRNA transcript levels were induced in hepatopancreas and hemocytes by Vibrio parahaemolyticus, Streptococcus iniae, and white spot syndrome virus. Notably, shrimp survival increased after knockdown of PvCCR1 and PvCCR5 followed by V. parahaemolyticus infection, indicating that PvCCR1 and PvCCR5 are annexed by the bacteria for their benefit, the absence of which attenuates the effects of the pathogen on shrimp survival. The present data indicate that PvCCR1 and PvCCR5 play key roles in the antimicrobial immune response and therefore vital for shrimp survival.


Asunto(s)
Bacterias , Receptores CCR5 , Animales , Receptores CCR5/genética , Mamíferos
17.
Microbiome ; 10(1): 213, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36464721

RESUMEN

BACKGROUND: Numerous microorganisms are found in aquaculture ponds, including several pathogenic bacteria. Infection of cultured animals by these pathogens results in diseases and metabolic dysregulation. However, changes in the metabolic profiles that occur at different infection stages in the same ponds and how these metabolic changes can be modulated by exogenous metabolites in Penaeus vannamei remain unknown. RESULTS: Here, we collected gastrointestinal tract (GIT) samples from healthy, diseased, and moribund P. vannamei in the same aquaculture pond for histological, metabolic, and transcriptome profiling. We found that diseased and moribund shrimp with empty GITs and atrophied hepatopancreas were mainly infected with Vibrio parahaemolyticus and Vibrio harveyi. Although significant dysregulation of crucial metabolites and their enzymes were observed in diseased and moribund shrimps, diseased shrimp expressed high levels of taurine and taurine metabolism-related enzymes, while moribund shrimp expressed high levels of hypoxanthine and related metabolism enzymes. Moreover, a strong negative correlation was observed between taurine levels and the relative abundance of V. parahaemolyticus and V. harveyi. Besides, exogenous taurine enhanced shrimp survival against V. parahaemolyticus challenge by increasing the expression of key taurine metabolism enzymes, mainly, cysteine dioxygenase (CDO) and cysteine sulfinic acid decarboxylase (CSD). CONCLUSIONS: Our study revealed that taurine metabolism could be modulated by exogenous supplementation to improve crustacean immune response against pathogenic microbes. Video Abstract.


Asunto(s)
Penaeidae , Vibrio , Animales , Alimentos Marinos , Acuicultura , Antibacterianos/farmacología
18.
Genes (Basel) ; 13(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36360293

RESUMEN

Sterol regulatory element-binding proteins (SREBPs) play vital roles in fatty acid metabolism and other metabolic processes in mammals. However, in penaeid shrimp, the repertoire of genes modulated by SREBP is unknown. Here, RNA interference-mediated knockdown followed by transcriptome sequencing on the Illumina Novaseq 6000 platform was used to explore the genes modulated by SREBP in Penaeus vannamei hepatopancreas. A total of 706 differentially expressed genes (DEGs) were identified, out of which 282 were upregulated and 424 downregulated. Although gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that most of the downregulated DEGs were involved in physiological processes related to immunity, metabolism, and cellular signaling pathways, many of the dysregulated genes have uncharacterized functions. While most of the dysregulated genes were annotated in metabolic processes, such as carbohydrate metabolism, lipid metabolism, signal transduction, and immune system, a large number (42.21%) are uncharacterized. Collectively, our current data revealed that SREBP modulates many genes involved in crucial physiological processes, such as energy metabolism, immune response, and cellular signaling pathways, as well as numerous genes with unannotated functions, in penaeid shrimp. These findings indicated that our knowledge of the repertoire of genes modulated by SREBP in shrimp lags behind that of mammals, probably due to limited research or because the complete genome of P. vannamei has just been sequenced.


Asunto(s)
Penaeidae , Animales , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Transcriptoma/genética , Hepatopáncreas , Perfilación de la Expresión Génica , Mamíferos/genética
19.
Ecotoxicol Environ Saf ; 241: 113827, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36068754

RESUMEN

Anthropogenic factors and climate change have serious effects on the aquatic ecosystem and aquaculture. Among water pollutants, ammonia has the greatest impact on aquaculture organisms such as penaeid shrimp because it makes them more susceptible to infections. In this study, we explored the effects of ammonia stress (0, 50, 100, and 150 mg/L) on the molecular structure and functions of the multifunctional respiratory protein hemocyanin (HMC) in Penaeus vannamei. While the mRNA expression of Penaeus vannamei hemocyanin (PvHMC) was up-regulated after ammonia stress, both plasma hemocyanin protein and oxyhemocyanin (OxyHMC) levels decreased. Moreover, ammonia stress changed the molecular structure of hemocyanin, modulated the expression of protein phosphatase 2 A (PP2A) and casein kinase 2α (CK2α) to regulate the phosphorylation modification of hemocyanin, and enhanced its degradation into fragments by trypsin. Under moderate ammonia stress conditions, hemocyanin also undergoes glycosylation to improve its in vitro antibacterial activity and binding with Gram-negative (Vibrio parahaemolyticus) and Gram-positive (Staphylococcus aureus) bacteria, albeit differently. The current findings indicate that P. vannamei hemocyanin undergoes adaptive molecular modifications under ammonia stress enabling the shrimp to survive and counteract the consequences of the stress.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Amoníaco/metabolismo , Amoníaco/toxicidad , Animales , Ecosistema , Hemocianinas/metabolismo , Penaeidae/metabolismo
20.
J Immunol ; 209(3): 476-487, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35851542

RESUMEN

Although invertebrates' innate immunity relies on several immune-like molecules, the diversity of these molecules and their immune response mechanisms are not well understood. Here, we show that Penaeus vannamei hemocyanin (PvHMC) undergoes specific deacetylation under Vibrio parahaemolyticus and LPS challenge. In vitro deacetylation of PvHMC increases its binding capacity with LPS and antibacterial activity against Gram-negative bacteria. Lysine residues K481 and K484 on the Ig-like domain of PvHMC are the main acetylation sites modulated by the acetyltransferase TIP60 and deacetylase HDAC3. Deacetylation of PvHMC on K481 and K484 allows PvHMC to form a positively charged binding pocket that interacts directly with LPS, whereas acetylation abrogates the positive charge to decrease PvHMC-LPS attraction. Besides, V. parahaemolyticus and LPS challenge increases the expression of Pvhdac3 to induce PvHMC deacetylation. This work indicates that, during bacterial infections, deacetylation of hemocyanin is crucial for binding with LPS to clear Gram-negative bacteria in crustaceans.


Asunto(s)
Hemocianinas , Penaeidae , Animales , Proteínas de Artrópodos/metabolismo , Lipopolisacáridos/metabolismo , Inmunidad Innata , Bacterias Gramnegativas , Antibacterianos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA