Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Sci Rep ; 14(1): 12896, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839894

RESUMEN

Healthy ecosystems and species have some degree of resilience to changing conditions, however as the frequency and severity of environmental changes increase, resilience may be diminished or lost. In Sweden, one example of a species with reduced resilience is the Atlantic cod (Gadus morhua). This species has been subjected to overfishing, and with additional pressures such as habitat degradation and changing environmental conditions there has been little to no recovery, despite more than a decade of management actions. Given the historical ecological, economical, and cultural significance of cod, it is important to understand how Atlantic cod respond to global climate change to recover and sustainably manage this species in the future. A multi-stressor experiment was conducted to evaluate physiological responses of juvenile cod exposed to warming, ocean acidification, and freshening, changes expected to occur in their nursery habitat. The response to single drivers showed variable effects related to fish biometrics and increased levels of oxidative stress dependent parameters. Importantly, two separate responses were seen within a single treatment for the multi-stressor and freshening groups. These within-treatment differences were correlated to genotype, with the offshore ecotype having a heightened stress response compared to the coastal ecotype, which may be better adapted to tolerate future changes. These results demonstrate that, while Atlantic cod have some tolerance for future changes, ecotypes respond differently, and cumulative effects of multiple stressors may lead to deleterious effects for this important species.


Asunto(s)
Cambio Climático , Ecotipo , Gadus morhua , Gadus morhua/fisiología , Animales , Ecosistema , Estrés Fisiológico , Océanos y Mares , Suecia , Agua de Mar/química , Adaptación Fisiológica , Estrés Oxidativo
2.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R484-R498, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38406842

RESUMEN

Salmonid fish include some of the most valued cultured fish species worldwide. Unlike most other fish, the hearts of salmonids, including Atlantic salmon and rainbow trout, have a well-developed coronary circulation. Consequently, their hearts' reliance on oxygenation through coronary arteries leaves them prone to coronary lesions, believed to precipitate myocardial ischemia. Here, we mimicked such coronary lesions by subjecting groups of juvenile rainbow trout to coronary ligation, assessing histomorphological myocardial changes associated with ischemia and scarring in the context of cardiac arrhythmias using electrocardiography (ECG). Notable ECG changes resembling myocardial ischemia-like ECG in humans, such as atrioventricular blocks and abnormal ventricular depolarization (prolonged and fragmented QRS complex), as well as repolarization (long QT interval) patterns, were observed during the acute phase of myocardial ischemia. A remarkable 100% survival rate was observed among juvenile trout subjected to coronary ligation after 24 wk. Recovery from coronary ligation occurred through adaptive ventricular remodeling, coupled with a fast cardiac revascularization response. These findings carry significant implications for understanding the mechanisms governing cardiac health in salmonid fish, a family particularly susceptible to cardiac diseases. Furthermore, our results provide valuable insights into comparative studies on the evolution, pathophysiology, and ontogeny of vertebrate cardiac repair and restoration.NEW & NOTEWORTHY Juvenile rainbow trout exhibit a remarkable capacity to recover from cardiac injury caused by myocardial ischemia. Recovery from cardiac damage occurs through adaptive ventricular remodeling, coupled with a rapid cardiac revascularization response. These findings carry significant implications for understanding the mechanisms governing cardiac health within salmonid fishes, which are particularly susceptible to cardiac diseases.


Asunto(s)
Isquemia Miocárdica , Oncorhynchus mykiss , Animales , Isquemia Miocárdica/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Remodelación Ventricular , Electrocardiografía , Enfermedades de los Peces/fisiopatología , Enfermedades de los Peces/patología , Factores de Tiempo
3.
Sci Rep ; 14(1): 1943, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38253742

RESUMEN

The relationship between hemolysis and lipid oxidation was explored in red blood cell (RBCs)-spiked washed cod mince (WCM). At pH 6.8 and 3 ± 1 °C, intact RBCs (71 µM Hb) delayed lipid oxidation by 1 day compared to WCM with partly or fully lysed RBCs which oxidized immediately. Intact RBCs also lowered peak peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) with up to 59.5% and 48.1%, respectively. Adding 3% (v/w) blood plasma to RBC-spiked WCM delayed the lipid oxidation onset from 1 to 3-4 days without delaying hemolysis. At pH 6.4 the oxidation onset in RBC-WCM was the same as for pH 6.8 while at pH 7.2-7.6 lipid oxidation was suppressed for 7 days. Micrographs revealed RBC-lysis from day 2 at pH 6.4 but at pH 7.6, RBC stayed intact for ≥ 7 days. Thus, assuring presence of plasma-derived antioxidants and/or elevating muscle pH to avoid hemolysis can aid valorization of blood rich underutilized fish raw materials.


Asunto(s)
Hemólisis , Músculos , Animales , Plasma , Eritrocitos , Peces , Lípidos , Concentración de Iones de Hidrógeno
4.
J Exp Biol ; 226(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36700410

RESUMEN

Salmonid ventricles are composed of spongy and compact myocardium, the latter being perfused via a coronary circulation. Rainbow trout (Oncorhynchus mykiss) acclimated to sea water have higher proportions of compact myocardium and display stroke volume-mediated elevations in resting cardiac output relative to freshwater-acclimated trout, probably to meet the higher metabolic needs of osmoregulatory functions. Here, we tested the hypothesis that cardiorespiratory performance of rainbow trout in sea water is more dependent on coronary perfusion by assessing the effects of coronary ligation on cardiorespiratory function in resting and exhaustively exercised trout acclimated to fresh water or sea water. While ligation only had minor effects on resting cardiorespiratory function across salinities, cardiac function after chasing to exhaustion was impaired, presumably as a consequence of atrioventricular block. Ligation reduced maximum O2 consumption rate by 33% and 17% in fish acclimated to sea water and fresh water, respectively, which caused corresponding 41% and 17% reductions in aerobic scope. This was partly explained by different effects on cardiac performance, as maximum stroke volume was only significantly impaired by ligation in sea water, resulting in 38% lower maximum cardiac output in seawater compared with 28% in fresh water. The more pronounced effect on respiratory performance in sea water was presumably also explained by lower blood O2 carrying capacity, with ligated seawater-acclimated trout having 16% and 17% lower haemoglobin concentration and haematocrit, respectively, relative to ligated freshwater trout. In conclusion, we show that the coronary circulation allows seawater-acclimated trout to maintain aerobic scope at a level comparable to that in fresh water.


Asunto(s)
Oncorhynchus mykiss , Animales , Aclimatación , Gasto Cardíaco , Agua de Mar , Perfusión
5.
Sci Rep ; 12(1): 13446, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927386

RESUMEN

Hemoglobin (Hb) is a powerful promoter of lipid oxidation, particularly in muscle of small pelagic fish species and fish by-products, both having high Hb-levels and highly unsaturated lipids. As Hb is located within the red blood cells (RBCs) it is here hypothesized that the perishable polyunsaturated fatty acids (PUFAs) can be protected from oxidation by limiting hemolysis during early fish processing. Using a model system consisting of washed-resuspended trout (Oncorhynchus mykiss) RBCs (wr-RBCs), the aim of this study was to evaluate how RBC lysis under cold storage was affected by selected parameters linked to blood or muscle: bacterial growth, energy status, pH, RBC membrane lipid oxidation and colloidal osmotic pressure (COP). The results indicated that bacterial growth had a modest effect on hemolysis while pH-values typical for post mortem fish muscle (6.4-6.8), and absence of glucose or albumin stimulated hemolysis. The rapid hemolysis observed at pH 6.4-6.8 correlated with lipid oxidation of the RBC membrane, while the lower hemolysis at pH 7.2-8.0 occurred with low, or without any RBC membrane lipid oxidation. When hemin was added to the RBCs at pH 6.8 hemolysis was induced without parallel RBC membrane oxidation, pointing at Hb-autoxidation and hemin-release per se as important events triggering lysis in fish muscle. Altogether, the study provided valuable findings which ultimately can aid development of new tools to combat lipid oxidation in post mortem fish muscle by limiting hemolysis.


Asunto(s)
Hemólisis , Oncorhynchus mykiss , Animales , Eritrocitos , Ácidos Grasos Insaturados/farmacología , Hemina/farmacología , Hemoglobinas/farmacología , Lípidos de la Membrana/farmacología , Músculos
6.
Water Res ; 218: 118477, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35487159

RESUMEN

A large pilot-scale granular activated carbon (GAC) filter was operated downstream in a full-scale wastewater treatment plant to remove organic micropollutants. To describe the spatial and temporal developments of micropollutant adsorption profiles in the GAC filter, micropollutants were extracted from GAC media taken at various filter depths and number of treated bed volumes. At a low number of treated bed volumes (2600 BVs), most micropollutants were adsorbed in the top layers of the filter. At increasing number of treated bed volumes (7300-15,500 BVs), the adsorption front for micropollutants progressed through the filter bed at varying rates, with sulfamethoxazole, fluconazole, and PFOS reaching the bottom layer before carbamazepine and other well-adsorbing micropollutants, such as propranolol and citalopram. Higher amounts of adsorbed micropollutants in the bottom layer of the filter bed resulted in decreased removal efficiencies in the treated wastewater. Mass estimations indicated biodegradation for certain micropollutants, such as naproxen, diclofenac, and sulfamethoxazole. A temporary increase in the concentration of the insecticide imidacloprid could be detected in the filter indicating that extraction of adsorbed micropollutants could provide an opportunity for backtracking of loading patterns.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Sulfametoxazol , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
7.
J Comp Physiol B ; 192(1): 95-106, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34618204

RESUMEN

When in seawater, rainbow trout (Oncorhynchus mykiss) drink to avoid dehydration and display stroke volume (SV) mediated elevations in cardiac output (CO) and an increased proportion of CO is diverted to the gastrointestinal tract as compared to when in freshwater. These cardiovascular alterations are associated with distinct reductions in systemic and gastrointestinal vascular resistance (RSys and RGI, respectively). Although increased gastrointestinal blood flow (GBF) is likely essential for osmoregulation in seawater, the sensory functions and mechanisms driving the vascular resistance changes and other associated cardiovascular changes in euryhaline fishes remain poorly understood. Here, we examined whether internal gastrointestinal mechanisms responsive to osmotic changes mediate the cardiovascular changes typically observed in seawater, by comparing the cardiovascular responses of freshwater-acclimated rainbow trout receiving continuous (for 4 days) gastric perfusion with half-strength seawater (½ SW, ~ 17 ppt) to control fish (i.e., no perfusion). We show that perfusion with ½ SW causes significantly larger increases in CO, SV and GBF, as well as reductions in RSys and RGI, compared with the control, whilst there were no significant differences in blood composition between treatments. Taken together, our data suggest that increased gastrointestinal luminal osmolality is sensed directly in the gut, and at least partly, mediates cardiovascular responses previously observed in SW acclimated rainbow trout. Even though a potential role of mechano-receptor stimulation from gastrointestinal volume loading in eliciting these cardiovascular responses cannot be excluded, our study indicates the presence of internal gastrointestinal milieu-sensing mechanisms that affect cardiovascular responses when environmental salinity changes.


Asunto(s)
Oncorhynchus mykiss , Animales , Gasto Cardíaco , Agua Dulce , Oncorhynchus mykiss/fisiología , Perfusión , Estómago
8.
J Exp Biol ; 224(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34792140

RESUMEN

Coronary arteriosclerosis is a common feature of both wild and farmed salmonid fishes and may be linked to stress-induced cardiac pathologies. Yet, the plasticity and capacity for long-term myocardial restructuring and recovery following a restriction in coronary blood supply are unknown. Here, we analyzed the consequences of acute (3 days) and chronic (from 33 to 62 days) coronary occlusion (i.e. coronary artery ligation) on cardiac morphological characteristics and in vivo function in juvenile rainbow trout, Oncorhynchus mykiss. Acute coronary artery occlusion resulted in elevated resting heart rate and decreased inter-beat variability, which are both markers of autonomic dysfunction following acute myocardial ischemia, along with severely reduced heart rate scope (maximum-resting heart rate) relative to sham-operated trout. We also observed a loss of myocardial interstitial collagen and compact myocardium. Following long-term coronary artery ligation, resting heart rate and heart rate scope normalized relative to sham-operated trout. Moreover, a distinct fibrous collagen layer separating the compact myocardium into two layers had formed. This may contribute to maintain ventricular integrity across the cardiac cycle or, alternatively, demark a region of the compact myocardium that continues to receive oxygen from the luminal venous blood. Taken together, we demonstrate that rainbow trout may cope with the aversive effects caused by coronary artery obstruction through plastic ventricular remodeling, which, at least in part, restores cardiac performance and myocardium oxygenation.


Asunto(s)
Infarto del Miocardio , Oncorhynchus mykiss , Animales , Corazón , Infarto del Miocardio/veterinaria , Miocardio , Oxígeno
9.
J Exp Biol ; 224(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34042975

RESUMEN

Warming in the region of the Western Antarctic Peninsula is occurring at an unprecedented rate, which may threaten the survival of Antarctic notothenioid fishes. Herein, we review studies characterizing thermal tolerance and cardiac performance in notothenioids - a group that includes both red-blooded species and the white-blooded, haemoglobinless icefishes - as well as the relevant biochemistry associated with cardiac failure during an acute temperature ramp. Because icefishes do not feed in captivity, making long-term acclimation studies unfeasible, we focus only on the responses of red-blooded notothenioids to warm acclimation. With acute warming, hearts of the white-blooded icefish Chaenocephalus aceratus display persistent arrhythmia at a lower temperature (8°C) compared with those of the red-blooded Notothenia coriiceps (14°C). When compared with the icefish, the enhanced cardiac performance of N. coriiceps during warming is associated with greater aerobic capacity, higher ATP levels, less oxidative damage and enhanced membrane integrity. Cardiac performance can be improved in N. coriiceps with warm acclimation to 5°C for 6-9 weeks, accompanied by an increase in the temperature at which cardiac failure occurs. Also, both cardiac mitochondrial and microsomal membranes are remodelled in response to warm acclimation in N. coriiceps, displaying homeoviscous adaptation. Overall, cardiac performance in N. coriiceps is malleable and resilient to warming, yet thermal tolerance and plasticity vary among different species of notothenioid fishes; disruptions to the Antarctic ecosystem driven by climate warming and other anthropogenic activities endanger the survival of notothenioids, warranting greater protection afforded by an expansion of marine protected areas.


Asunto(s)
Ecosistema , Perciformes , Animales , Regiones Antárticas , Peces , Corazón
10.
J Exp Biol ; 224(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33688058

RESUMEN

Approximately half of all fishes have, in addition to the luminal venous O2 supply, a coronary circulation supplying the heart with fully oxygenated blood. Yet, it is not fully understood how coronary O2 delivery affects tolerance to environmental extremes such as warming and hypoxia. Hypoxia reduces arterial oxygenation, while warming increases overall tissue O2 demand. Thus, as both stressors are associated with reduced venous O2 supply to the heart, we hypothesised that coronary flow benefits hypoxia and warming tolerance. To test this hypothesis, we blocked coronary blood flow (via surgical coronary ligation) in rainbow trout (Oncorhynchus mykiss) and assessed how in vivo cardiorespiratory performance and whole-animal tolerance to acute hypoxia and warming was affected. While coronary ligation reduced routine stroke volume relative to trout with intact coronaries, cardiac output was maintained by an increase in heart rate. However, in hypoxia, coronary-ligated trout were unable to increase stroke volume to maintain cardiac output when bradycardia developed, which was associated with a slightly reduced hypoxia tolerance. Moreover, during acute warming, coronary ligation caused cardiac function to collapse at lower temperatures and reduced overall heat tolerance relative to trout with intact coronary arteries. We also found a positive relationship between individual hypoxia and heat tolerance across treatment groups, and tolerance to both environmental stressors was positively correlated with cardiac performance. Collectively, our findings show that coronary perfusion improves cardiac O2 supply and therefore cardiovascular function at environmental extremes, which benefits tolerance to natural and anthropogenically induced environmental perturbations.


Asunto(s)
Hemodinámica , Oncorhynchus mykiss , Animales , Gasto Cardíaco , Circulación Coronaria , Corazón , Frecuencia Cardíaca , Hipoxia
11.
J Comp Physiol B ; 191(2): 301-311, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33537851

RESUMEN

Few studies have addressed how reduced water salinity affects cardiovascular and metabolic function in marine euryhaline fishes, despite its relevance for predicting impacts of natural salinity variations and ongoing climate change on marine fish populations. Here, shorthorn sculpin (Myoxocephalus scorpius) were subjected to different durations of reduced water salinity from 33 to 15 ppt. Routine metabolic rate decreased after short-term acclimation (4-9 days) to 15 ppt, which corresponded with similar reductions in cardiac output. Likewise, standard metabolic rate decreased after acute transition (3 h) from 33 to 15 ppt, suggesting a reduced energetic cost of osmoregulation at 15 ppt. Interestingly, gut blood flow remained unchanged across salinities, which contrasts with previous findings in freshwater euryhaline teleosts (e.g., rainbow trout) exposed to different salinities. Although plasma osmolality, [Na+], [Cl-] and [Ca2+] decreased in 15 ppt, there were no signs of cellular osmotic stress as plasma [K+], [hemoglobin] and hematocrit remained unchanged. Taken together, our data suggest that shorthorn sculpin are relatively weak plasma osmoregulators that apply a strategy whereby epithelial ion transport mechanisms are partially maintained across salinities, while plasma composition is allowed to fluctuate within certain ranges. This may have energetic benefits in environments where salinity naturally fluctuates, and could provide shorthorn sculpin with competitive advantages if salinity fluctuations intensify with climate change in the future.


Asunto(s)
Branquias , Salinidad , Animales , Peces , Branquias/metabolismo , Osmorregulación , Equilibrio Hidroelectrolítico
13.
J Fish Biol ; 98(1): 287-291, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33090461

RESUMEN

In fishes, the spleen can function as an important reservoir for red blood cells (RBCs), which, following splenic contraction, may be released into the circulation to increase haematocrit during energy-demanding activities. This trait is particularly pronounced in red-blooded Antarctic fishes in which the spleen can sequester a large proportion of RBCs during rest, thereby reducing blood viscosity, which may serve as an adaptation to life in cold environments. In one species, Pagothenia borchgrevinki, it has previously been shown that splenic contraction primarily depends on cholinergic stimulation. The aim of the present study was to investigate the regulation of splenic contraction in five other Antarctic fish species, three red-blooded notothenioids (Dissostichus mawsoni Norman, 1937, Gobionotothen gibberifrons Lönnberg, 1905, Notothenia coriiceps Richardson 1844) and two white-blooded "icefish" (Chaenocephalus aceratus Lönnberg, 1906 and Champsocephalus gunnari Lönnberg, 1905), which lack haemoglobin and RBCs, but nevertheless possess a large spleen. In all species, splenic strips constricted in response to both cholinergic (carbachol) and adrenergic (adrenaline) agonists. Surprisingly, in the two species of icefish, the spleen responded with similar sensitivity to red-blooded species, despite contraction being of little obvious benefit for releasing RBCs into the circulation. Although the icefish lineage lost functional haemoglobin before diversifying over the past 7.8-4.8 millions of years, they retain the capacity to contract the spleen, likely as a vestige inherited from their red-blooded ancestors.


Asunto(s)
Adaptación Fisiológica , Perciformes/fisiología , Bazo/fisiología , Aclimatación , Agonistas Adrenérgicos/farmacología , Animales , Regiones Antárticas , Agonistas Colinérgicos/farmacología , Frío , Hematócrito , Hemoglobinas , Perciformes/sangre , Bazo/efectos de los fármacos
16.
J Exp Biol ; 223(Pt 2)2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31871117

RESUMEN

Blood doping, the practice of boosting the oxygen carrying capacity of blood, is an illegal strategy used by human athletes to enhance aerobic capacity and athletic performance. Interestingly, the practice of boosting blood oxygen carrying capacity is also naturally prevalent in the animal kingdom via the splenic release of stored erythrocytes. Here, we demonstrate that an Antarctic notothenioid fish, the bald notothen (Pagothenia borchgrevinki), is a master of this practice. Because of the sub-zero environment these fish inhabit, they sequester a large proportion of erythrocytes in the spleen during times of inactivity to reduce the energetic and physiological costs associated with continuously pumping highly viscous blood around the body. However, in response to metabolically demanding situations (i.e. exercise and feeding), these fish contract the spleen to eject stored erythrocytes into circulation, which boosts blood oxygen carrying capacity by up to 207% (cf. exercise-induced increases of ∼40-60% in a range of other vertebrates and ∼5-25% in blood-doping athletes). By evaluating cardiorespiratory differences between splenectomized (unable to release erythrocytes from the spleen) and sham-operated individuals, we demonstrate the metabolic benefits (i.e. aerobic scope increase of 103%) and the cardiovascular trade-offs (i.e. ventral aortic blood pressure and cardiac workload increase of 12% and 30%, respectively) associated with the splenic blood-boosting strategy. In conclusion, this strategy provides bald notothens with an extraordinary facultative aerobic scope that enables an active lifestyle in the extreme Antarctic marine environment, while minimizing the energetic and physiological costs of transporting highly viscous blood during times of reduced energetic demand.


Asunto(s)
Adaptación Fisiológica , Frío , Oxígeno/sangre , Perciformes/fisiología , Animales , Regiones Antárticas
17.
Conserv Physiol ; 7(1): coz049, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31620287

RESUMEN

Antarctic notothenioids, some of which lack myoglobin (Mb) and/or haemoglobin (Hb), are considered extremely stenothermal, which raises conservation concerns since Polar regions are warming at unprecedented rates. Without reliable estimates of maximum cardiac output ([Formula: see text]), it is impossible to assess their physiological scope in response to warming seas. Therefore, we compared cardiac performance of two icefish species, Chionodraco rastrospinosus (Hb-Mb+) and Chaenocephalus aceratus (Hb-Mb-), with a related notothenioid, Notothenia coriiceps (Hb+Mb+) using an in situ perfused heart preparation. The maximum [Formula: see text], heart rate (f H), maximum cardiac work (W C) and relative ventricular mass of N. coriiceps at 1°C were comparable to temperate-water teleosts, and acute warming to 4°C increased f H and W C, as expected. In contrast, icefish hearts accommodated a higher maximum stroke volume (V S) and maximum [Formula: see text] at 1°C, but their unusually large hearts had a lower f H and maximum afterload tolerance than N. coriiceps at 1°C. Furthermore, maximum V S, maximum [Formula: see text] and f H were all significantly higher for the Hb-Mb+ condition compared with the Hb-Mb- condition, a potential selective advantage when coping with environmental warming. Like N. coriiceps, both icefish species increased f H at 4°C. Acutely warming C. aceratus increased maximum [Formula: see text], while C. rastrospinosus (like N. coriiceps) held at 4°C for 1 week maintained maximum [Formula: see text] when tested at 4°C. These experiments involving short-term warming should be followed up with long-term acclimation studies, since the maximum cardiac performance of these three Antarctic species studied seem to be tolerant of temperatures in excess of predictions associated with global warming.

18.
J Exp Biol ; 222(Pt 17)2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31395678

RESUMEN

In seawater, rainbow trout (Oncorhynchus mykiss) drink and absorb water through the gastrointestinal tract to compensate for water passively lost to the hyperosmotic environment. Concomitantly, they exhibit elevated cardiac output and a doubling of gastrointestinal blood flow to provide additional O2 to the gut and increase convective flux of absorbed ions and water. Yet, it is unknown how warming waters, which elevate tissue O2 demand and the rate of diffusion of ions and water across the gills (i.e. the osmo-respiratory compromise), affects these processes. We measured cardiovascular and blood variables of rainbow trout acclimated to freshwater and seawater during acute warming from 11 to 17°C. Relative to freshwater-acclimated trout, cardiac output was 34% and 55% higher in seawater-acclimated trout at 11 and 17°C, respectively, which allowed them to increase gastrointestinal blood flow significantly more during warming (increases of 75% in seawater vs. 31% in freshwater). These adjustments likely served to mitigate the impact of warming on osmotic balance, as changes in ionic and osmotic blood composition were minor. Furthermore, seawater-acclimated trout seemingly had a lower tissue O2 extraction, explaining why trout acclimated to freshwater and seawater often exhibit similar metabolic rates, despite a higher cardiac output in seawater. Our results highlight a novel role of gastrointestinal blood perfusion in the osmo-respiratory compromise in fish, and improve our understanding of the physiological changes euryhaline fishes must undergo when faced with interacting environmental challenges such as transient warming events.


Asunto(s)
Aclimatación , Gasto Cardíaco , Hemodinámica , Calor , Oncorhynchus mykiss/fisiología , Animales , Agua Dulce , Agua de Mar
19.
Sci Rep ; 9(1): 9090, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31235773

RESUMEN

Investigating the mechanisms that fish employ to maintain homeostasis in their everyday life requires measurements of physiological and behavioural responses in the field. With multivariate bio-loggers, we continuously measured gastrointestinal blood flow (GBF), heart rate, activity and body temperature in rainbow trout (Oncorhynchus mykiss) swimming freely amongst ~5000 conspecifics in a sea cage. Our findings clearly demonstrate that while both acute aquaculture-related stress and spontaneous activity resulted in transient reductions in GBF (i.e. reductions of up to 65%), recovery from stressful handling practices subsequently involved a substantial and prolonged gastrointestinal hyperemia far beyond the level observed prior to the stressor. The gastrointestinal hyperemia may be necessary to repair the damage to the gastrointestinal tract caused by acute stress. Furthermore, heart rate responses to acute stress or voluntary activity differed depending on the individual's physiological state. Stressed fish (i.e. mean heart rates >70 beats min-1) exhibited a bradycardic response to acute stress or activity, whereas fish with mean heart rates <60 beats min-1 instead demonstrated strong tachycardic responses. Remote monitoring of physiological and behavioural variables using bio-loggers can provide unique insights into 'real-life' responses of animals, which can largely differ from the responses observed in confined laboratory settings.


Asunto(s)
Acuicultura , Fenómenos Fisiológicos Cardiovasculares , Monitoreo Fisiológico/métodos , Oncorhynchus mykiss/fisiología , Tecnología de Sensores Remotos/métodos , Estrés Fisiológico , Natación , Animales
20.
J Exp Biol ; 222(Pt 6)2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30787139

RESUMEN

Unusual undulations in resting tension (tonus waves) were described in isolated atria from freshwater turtles more than a century ago. These tonus waves were soon after married with the histological demonstration of a rich layer of smooth muscle on the luminal side of the atrial wall. Research thereafter waned and the functional significance of this smooth muscle has remained obscure. Here, we provide evidence that contraction of the smooth muscle in the atria may be able to change cardiac output in turtle hearts. In in situ perfused hearts of the red-eared slider turtle (Trachemys scripta elegans), we demonstrated that activation of smooth muscle contraction with histamine (100 nmol kg-1 bolus injected into perfusate) reduced cardiac output by decreasing stroke volume (>50% decrease in both parameters). Conversely, inhibition of smooth muscle contraction with wortmannin (10 µmol l-1 perfusion) approximately doubled baseline stroke volume and cardiac output. We suggest that atrial smooth muscle provides a unique mechanism to control cardiac filling that could be involved in the regulation of stroke volume during diving.


Asunto(s)
Función Atrial , Gasto Cardíaco , Corazón/fisiología , Músculo Liso/fisiología , Contracción Miocárdica , Tortugas/fisiología , Animales , Femenino , Masculino , Volumen Sistólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA