Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nanomicro Lett ; 16(1): 203, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789605

RESUMEN

Herein, ionomer-free amorphous iridium oxide (IrOx) thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells (PEMECs) via low-cost, environmentally friendly, and easily scalable electrodeposition at room temperature. Combined with a Nafion 117 membrane, the IrOx-integrated electrode with an ultralow loading of 0.075 mg cm-2 delivers a high cell efficiency of about 90%, achieving more than 96% catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane (2 mg cm-2). Additionally, the IrOx electrode demonstrates superior performance, higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes. Notably, the remarkable performance could be mainly due to the amorphous phase property, sufficient Ir3+ content, and rich surface hydroxide groups in catalysts. Overall, due to the high activity, high cell efficiency, an economical, greatly simplified and easily scalable fabrication process, and ultrahigh material utilization, the IrOx electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.

2.
Nanomicro Lett ; 15(1): 144, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37269447

RESUMEN

Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings, high catalyst utilization and facile fabrication are urgently needed to enable cost-effective, green hydrogen production via proton exchange membrane electrolyzer cells (PEMECs). Herein, benefitting from a thin seeding layer, bottom-up grown ultrathin Pt nanosheets (Pt-NSs) were first deposited on thin Ti substrates for PEMECs via a fast, template- and surfactant-free electrochemical growth process at room temperature, showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies. Combined with an anode-only Nafion 117 catalyst-coated membrane (CCM), the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm-2 demonstrates superior cell performance to the commercial CCM (3.0 mgPt cm-2), achieving 99.5% catalyst savings and more than 237-fold higher catalyst utilization. The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction. Overall, this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.

3.
ACS Appl Mater Interfaces ; 15(20): 24284-24295, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37167124

RESUMEN

Highly efficient electrodes with simplified fabrication and low cost are highly desired for the commercialization of proton exchange membrane electrolyzer cells (PEMECs). Herein, highly porous Ir-coated thin/tunable liquid/gas diffusion layers with honeycomb-structured catalyst layers were fabricated as anode electrodes for PEMECs via integrating a facile and fast electroplating process with efficient template removal. Combined with a Nafion 117 membrane, a low cell voltage of 1.842 V at 2000 mA/cm2 and a high mass activity of 4.16 A/mgIr at 1.7 V were achieved with a low Ir loading of 0.27 mg/cm2, outperforming most of the recently reported anode catalysts. Moreover, the thin electrode shows outstanding stability at a high current density of 1800 mA/cm2 in the practical PEMEC. Moreover, with in-situ high-speed visualizations in PEMECs, the catalyst layer structure's impact on real-time electrochemical reactions and mass transport phenomena was investigated for the first time. Increased active sites and improved multiphase transport properties with favorable bubble detachment and water diffusion for the honeycomb-structured electrode are revealed. Overall, the significantly simplified ionomer-free honeycomb thin electrode with low catalyst loading and remarkable performance could efficiently accelerate the industrial application of PEMECs.

4.
ACS Appl Mater Interfaces ; 14(7): 9002-9012, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35142208

RESUMEN

For a proton exchange membrane electrolyzer cell (PEMEC), conditioning is an essential process to enhance its performance, reproducibility, and economic efficiency. To get more insights into conditioning, a PEMEC with Ir-coated gas diffusion electrode (IrGDE) was investigated by electrochemistry and in situ visualization characterization techniques. The changes of polarization curves, electrochemical impedance spectra (EIS), and bubble dynamics before and after conditioning are analyzed. The polarization curves show that the cell efficiency increased by 9.15% at 0.4 A/cm2, and the EIS and Tafel slope results indicate that both the ohmic and activation overpotential losses decrease after conditioning. The visualization of bubble formation unveils that the number of bubble sites increased greatly from 14 to 29 per pore after conditioning, at the same voltage of 1.6 V. Under the same current density of 0.2 A/cm2; the average bubble detachment size decreased obviously from 35 to 25 µm. The electrochemistry and visualization characterization results jointly unveiled the increase of reaction sites and the surface oxidation on the IrGDE during conditioning, which provides more insights into the conditioning and benefits for the future GDE design and optimization.

5.
Small ; 18(14): e2107745, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35174962

RESUMEN

An anode electrode concept of thin catalyst-coated liquid/gas diffusion layers (CCLGDLs), by integrating Ir catalysts with Ti thin tunable LGDLs with facile electroplating in proton exchange membrane electrolyzer cells (PEMECs), is proposed. The CCLGDL design with only 0.08 mgIr cm-2 can achieve comparative cell performances to the conventional commercial electrode design, saving ≈97% Ir catalyst and augmenting a catalyst utilization to ≈24 times. CCLGDLs with regulated patterns enable insight into how pattern morphology impacts reaction kinetics and catalyst utilization in PEMECs. A specially designed two-sided transparent reaction-visible cell assists the in situ visualization of the PEM/electrode reaction interface for the first time. Oxygen gas is observed accumulating at the reaction interface, limiting the active area and increasing the cell impedances. It is demonstrated that mass transport in PEMECs can be modified by tuning CCLGDL patterns, thus improving the catalyst activation and utilization. The CCLGDL concept promises a future electrode design strategy with a simplified fabrication process and enhanced catalyst utilization. Furthermore, the CCLGDL concept also shows great potential in being a powerful tool for in situ reaction interface research in PEMECs and other energy conversion devices with solid polymer electrolytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA