Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(2): 102853, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592928

RESUMEN

The kinetochore establishes the linkage between chromosomes and the spindle microtubule plus ends during mitosis. In vertebrates, the spindle-kinetochore-associated (Ska1,2,3) complex stabilizes kinetochore attachment with the microtubule plus ends, but how Ska is recruited to and stabilized at the kinetochore-microtubule interface is not understood. Here, our results show that interaction of Ska1 with the general microtubule plus end-associated protein EB1 through a conserved motif regulates Ska recruitment to kinetochores in human cells. Ska1 forms a stable complex with EB1 via interaction with the motif in its N-terminal disordered loop region. Disruption of this interaction either by deleting or mutating the motif disrupts Ska complex recruitment to kinetochores and induces chromosome alignment defects, but it does not affect Ska complex assembly. Atomic-force microscopy imaging revealed that Ska1 is anchored to the C-terminal region of the EB1 dimer through its loop and thereby promotes formation of extended structures. Furthermore, our NMR data showed that the Ska1 motif binds to the residues in EB1 that are the binding sites of other plus end targeting proteins that are recruited to microtubules by EB1 through a similar conserved motif. Collectively, our results demonstrate that EB1-mediated Ska1 recruitment onto the microtubule serves as a general mechanism for the formation of vertebrate kinetochore-microtubule attachments and metaphase chromosome alignment.


Asunto(s)
Proteínas Cromosómicas no Histona , Cinetocoros , Proteínas Asociadas a Microtúbulos , Humanos , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis
2.
Protein Sci ; 31(10): e4438, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36173163

RESUMEN

Ostrinia furnacalis is an invasive lepidopteran agricultural pest that relies on olfaction for mating and reproduction. Male moths have an extremely sensitive olfactory system that can detect the sex pheromones emitted by females over a great distance. Pheromone-binding proteins present in the male moth antenna play a key role in the pheromone uptake, transport, and release at the dendritic membrane of the olfactory neuron. Here, we report the first high-resolution NMR structure of a pheromone-binding protein from an Ostrinia species at pH 6.5. The core of the Ostrinia furnacalis PBP2 (OfurPBP2) consists of six helices, α1a (2-14), α1b (16-22), α2 (27-37), α3 (46-60), α4 (70-80), α5 (84-100), and α6 (107-124) surrounding a large hydrophobic pocket. The structure is stabilized by three disulfide bridges, 19-54, 50-108, and 97-117. In contrast to the unstructured C-terminus of other lepidopteran PBPs, the C-terminus of OfurPBP2 folds into an α-helix (α7) at pH 6.5. The protein has nanomolar affinity towards both pheromone isomers. Molecular docking of both pheromones, E-12 and Z-12-tetradecenyl acetate, to OfurPBP2 revealed that the residues Met5, Lys6, Met8, Thr9, Phe12, Phe36, Trp37, Phe76, Ser115, Phe118, Lys119, Ile122, His123, and Ala128 interact with both isomers, while Thr9 formed a hydrogen bond with the acetate head group. NMR structure and thermal unfolding studies with CD suggest that ligand release at pH 4.5 is likely due to the partial unfolding of the protein.


Asunto(s)
Mariposas Nocturnas , Atractivos Sexuales , Animales , Proteínas Portadoras/química , Disulfuros/metabolismo , Femenino , Proteínas de Insectos/química , Ligandos , Masculino , Simulación del Acoplamiento Molecular , Mariposas Nocturnas/química , Mariposas Nocturnas/metabolismo , Feromonas/química , Feromonas/metabolismo , Atractivos Sexuales/metabolismo
3.
J Phys Chem B ; 125(36): 10119-10125, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34473517

RESUMEN

We probed the "dark" state involved in the protein-quantum dot (QD) interaction using a relaxation-based solution nuclear magnetic resonance (NMR) approach. We examined the dynamics and exchange kinetics of the ubiquitin-CdTe model system, which undergoes a fast exchange in the transverse relaxation time scale. We applied the recently developed dark-state exchange saturation transfer (DEST), lifetime line broadening (ΔR2), and exchange-induced chemical shift (δex) solution NMR techniques to obtain a residue-specific binding behavior of the protein on the QD surface. The variation in the estimated 15N-R2bound values clearly shows the dynamic nature of bound Ub. Upon mapping the amino acid residues showing a faster relaxation rate on the electrostatic potential surface of the protein, we have determined that the interaction is preferably electrostatic, and the amino acid residues involved in binding lie on the positively charged surface of the protein. We believe that our experimental approach should provide more in-depth knowledge to engineer new hybrid protein-QD systems in the future.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Telurio
4.
Biophys J ; 120(10): 2019-2029, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33737159

RESUMEN

SxIP is a microtubule tip localizing signal found in many +TIP proteins that bind to the hydrophobic cavity of the C-terminal domain of end binding protein 1 (EB1) and then positively regulate the microtubule plus-end tracking of EBs. However, the exact mechanism of microtubule activation of EBs in the presence of SxIP signaling motif is not known. Here, we studied the effect of SxIP peptide on the native conformation of EB1 in solution. Using various NMR experiments, we found that SxIP peptide promoted the dissociation of natively formed EB1 dimer. We also discovered that I224A mutation of EB1 resulted in an unfolded C-terminal domain, which upon binding with the SxIP motif folded to its native structure. Molecular dynamics simulations also confirmed the relative structural stability of EB1 monomer in the SxIP bound state. Residual dipolar couplings and heteronuclear NOE analysis suggested that the binding of SxIP peptide at the C-terminal domain of EB1 decreased the dynamics and conformational flexibility of the N-terminal domain involved in EB1-microtubule interaction. The SxIP-induced disruption of the dimeric interactions in EB1, coupled with the reduction in conformational flexibility of the N-terminal domain of EB1, might facilitate the microtubule association of EB1.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Microtúbulos , Secuencias de Aminoácidos , Sustancias Macromoleculares/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA