Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5676, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709761

RESUMEN

Native mass spectrometry (MS) is a powerful technique for interrogating membrane protein complexes and their interactions with other molecules. A key aspect of the technique is the ability to preserve native-like structures and noncovalent interactions, which can be challenging depending on the choice of detergent. Different strategies have been employed to reduce charge on protein complexes to minimize activation and preserve non-covalent interactions. Here, we report the synthesis of a class of polyamine detergents tailored for native MS studies of membrane proteins. These detergents, a series of spermine covalently attached to various alkyl tails, are exceptional charge-reducing molecules, exhibiting a ten-fold enhanced potency over spermine. Addition of polyamine detergents to proteins solubilized in maltoside detergents results in improved, charge-reduced native mass spectra and reduced dissociation of subunits. Polyamine detergents open new opportunities to investigate membrane proteins in different detergent environments that have thwarted previous native MS studies.


Asunto(s)
Proteínas de la Membrana , Poliaminas , Detergentes , Espermina , Espectrometría de Masas
2.
Chem Commun (Camb) ; 58(63): 8850-8853, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35849079

RESUMEN

A novel class of recyclable thermoset has been developed from cis-3,4-diphenylcyclobutane-1,2-dicarboxylic acid (CBDA-4) due to its thermocleavability at high temperature. This key CBDA-4 building block was synthesized from ß-trans-cinnamic acid using a [2+2] photocycloaddition reaction. CBDA-4 was subsequently linked with glycerol via esterification to give a thermoset with Tg of 68 °C. The thermoset was heated to 300 °C to analyze its degradation. A key intermediate was successfully obtained after purification of the degraded polymer. NMR, FT-IR, HRMS, and single crystal X-ray diffraction confirmed the intermediate was glycerol cinnamate, which was the result of splitting cyclobutane in the polymer backbone at high temperature. Glycerol cinnamate was readily hydrolyzed reforming the starting materials glycerol and trans-cinnamic acid to complete the recycling loop.


Asunto(s)
Ciclobutanos , Glicerol , Cinamatos/química , Ácidos Dicarboxílicos , Glicerol/química , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA