Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Hazard Mater ; 422: 126875, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34411961

RESUMEN

Botanical filtration is a biological-based treatment method suitable for removing hazardous volatile organic compounds (VOCs) from air streams, based on forcing an air flow through a porous substrate and foliage of a living botanical compartment. The pathways and removal mechanisms during VOC bioremediation have been largely investigated; however, their mathematical representation is well established only for the non-botanical components of the system. In this study, we evaluated the applicability of such a modelling scheme to systems which include a botanical compartment. We implemented a one-dimensional numerical model and performed a global sensitivity analysis to measure the input parameters influence on the transient and steady biofilter responses. We found that the most sensitive parameters on the transient-state behaviour were the mass transfer coefficient between gas and solid surfaces, and the fraction of solid surfaces covered by the biofilm; the steady-state response was primarily influenced by the biofilm specific surface area and the fraction of surfaces covered by the biofilm. We calibrated the identified set of parameters and successfully validated the model against data from a pilot-scale installation. The results showed that the application of the model to systems with a botanical compartment is feasible, although under a strict set of assumptions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Biodegradación Ambiental , Filtración , Compuestos Orgánicos Volátiles/análisis
2.
Waste Manag ; 136: 162-173, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34678658

RESUMEN

Phytoremediation is a potentially suitable technique for the reclamation of toxic landfill leachate (LL) by decreasing its volume through water uptake and improving its composition by uptake, accumulation and amelioration of pollutants. We investigated the use of two parameters, the LL concentration and the Leachate Pollution Index (LPI), a method used to determine the phytotoxicity potential of a leachate source based on a weighted sum of its components, to set the best LL dilution to apply when poplar clone 'Orion' and willow clone 'Levante' are selected for phytoremediation. Cuttings were watered with five LL concentrations ranging from 0 to 100%. The poplar clone showed significantly higher values than the willow clone for lowest effective concentration index (LOEC) for leaf (i.e. 11.3% vs 10.5%; p = 0.0284) and total biomass (i.e. 10.9% vs 10.6%; p = 0.0402) and for lowest effective LPI for leaf (i.e. 12.3 vs 12.1; p = 0.0359) and total biomass (i.e. 12.8 versus 12.2; p = 0.0365), respectively, with effectiveness demonstrating the LOEC or LPI value at which the parameter is negatively affected. Photosynthetic rates were higher in poplar than willow in both control and the lowest LL dilution, but rapidly declined in both at higher LL dilutions. Although a direct translation of data from bench trials to field conditions should be investigated, we concluded that in the establishment phase, the poplar hybrid is more tolerant than the willow hybrid to LL. We also provide evidence for LPI as a potential predictor for setting LL irrigation levels in the initial phase of a phyto-treatment approach.


Asunto(s)
Populus , Salix , Contaminantes Químicos del Agua , Biodegradación Ambiental , Biomasa , Contaminantes Químicos del Agua/toxicidad
3.
mSystems ; 6(4): e0055021, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34313466

RESUMEN

Associations between leguminous plants and symbiotic nitrogen-fixing rhizobia are a classic example of mutualism between a eukaryotic host and a specific group of prokaryotic microbes. Although this symbiosis is in part species specific, different rhizobial strains may colonize the same nodule. Some rhizobial strains are commonly known as better competitors than others, but detailed analyses that aim to predict rhizobial competitive abilities based on genomes are still scarce. Here, we performed a bacterial genome-wide association (GWAS) analysis to define the genomic determinants related to the competitive capabilities in the model rhizobial species Sinorhizobium meliloti. For this, 13 tester strains were green fluorescent protein (GFP) tagged and assayed versus 3 red fluorescent protein (RFP)-tagged reference competitor strains (Rm1021, AK83, and BL225C) in a Medicago sativa nodule occupancy test. Competition data and strain genomic sequences were employed to build a model for GWAS based on k-mers. Among the k-mers with the highest scores, 51 k-mers mapped on the genomes of four strains showing the highest competition phenotypes (>60% single strain nodule occupancy; GR4, KH35c, KH46, and SM11) versus BL225C. These k-mers were mainly located on the symbiosis-related megaplasmid pSymA, specifically on genes coding for transporters, proteins involved in the biosynthesis of cofactors, and proteins related to metabolism (e.g., fatty acids). The same analysis was performed considering the sum of single and mixed nodules obtained in the competition assays versus BL225C, retrieving k-mers mapped on the genes previously found and on vir genes. Therefore, the competition abilities seem to be linked to multiple genetic determinants and comprise several cellular components. IMPORTANCE Decoding the competitive pattern that occurs in the rhizosphere is challenging in the study of bacterial social interaction strategies. To date, the single-gene approach has mainly been used to uncover the bases of nodulation, but there is still a knowledge gap regarding the main features that a priori characterize rhizobial strains able to outcompete indigenous rhizobia. Therefore, tracking down which traits make different rhizobial strains able to win the competition for plant infection over other indigenous rhizobia will improve the strain selection process and, consequently, plant yield in sustainable agricultural production systems. We proved that a k-mer-based GWAS approach can efficiently identify the competition determinants of a panel of strains previously analyzed for their plant tissue occupancy using double fluorescent labeling. The reported strategy will be useful for detailed studies on the genomic aspects of the evolution of bacterial symbiosis and for an extensive evaluation of rhizobial inoculants.

4.
J Environ Manage ; 277: 111454, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33070021

RESUMEN

Phytotechnological approaches using living plants are currently being proposed to address a wide range of environmental purposes including the treatment of landfill leachate (LL). Despite their popularity, few studies have investigated this possibility under actual Mediterranean conditions using fast-growing trees. This research reports the results of a two-year project where poplar and willow grown in mesocosm were tested for their ability to withstand and remove specific pollutants from different [Low: 7% (1st year) and 15% (2nd year); High: 15% (1st year) and 30% (2nd year)] amounts of LL. Results indicate that both species were able to treat 340 (Low) and 680 (High) m3 ha-1 in the establishment year (70 days) and 2470 (Low) and 4950 (High) m3 ha-1 in the second year (150 days). Both species yielded the same aboveground biomass, but under high LL treatment, poplar performed better than willow. Poplar showed on average significantly higher extraction rates for Cd, Cu, P, and N than willow. Moreover, under high LL treatment, poplar also seemed more efficient than willow in decreasing the concentration of specific pollutants (BOD5, COD and As) in output effluent. However, with low LL loads both species were able to significantly reduce other compounds (i.e. NH4-N, Cu and Ni). By contrast, Cl, surfactants, and NO3-N, had a tendency to accumulate over time in the effluent and could still represent an actual constraint to large-scale application of the technique. The fate of such pollutants should be investigated with further research to better inform strategies used to manage low amounts of high-concentrated effluent.


Asunto(s)
Populus , Salix , Contaminantes Químicos del Agua , Biodegradación Ambiental , Clima
5.
J Environ Manage ; 247: 688-697, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31279146

RESUMEN

At an Italian field test site the efficiency of phytoextraction of toxic trace elements (TEs) from the soil is determined by uptake capacity, bioavailability of TEs in the soil and biomass yield of the plants involved. Altering the quantity and type of biomass produced, especially among fast-growing trees, may be one method of increasing phytoextraction efficiency. In poplar bark and wood show different TE concentration. Poplar also shows changing proportions of bark and wood with increasing diameter at breast height (DBH). Though it is often thought that the amount of TE accumulated in the biomass increases with the size of the plant, in the current study we show that this is only partially true. In fact while Zn is highly accumulated by the largest (60 mm DBH) poplar plants, Cd, Cu, and Ni were more concentrated in slightly smaller plants (50 mm DBH), and Pb in even smaller (40 mm DBH). These findings could open new strategies for managing a poplar phytoextraction stand in terms of coppicing techniques and planting cycles in order to address specific targeted TEs and enhance the overall performance of this green technology.


Asunto(s)
Metales Pesados , Populus , Contaminantes del Suelo , Oligoelementos , Biodegradación Ambiental , Suelo
6.
Plant J ; 100(1): 55-67, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31148333

RESUMEN

Soil salinity is a major constraint for the global agricultural production. For many decades, Na+ exclusion from uptake has been the key trait targeted in breeding programs; yet, no major breakthrough in creating salt-tolerant germplasm was achieved. In this work, we have combined the microelectrode ion flux estimation (MIFE) technique for non-invasive ion flux measurements with confocal fluorescence dye imaging technique to screen 45 accessions of barley to reveal the relative contribution of Na+ exclusion from the cytosol to the apoplast and its vacuolar sequestration in the root apex, for the overall salinity stress tolerance. We show that Na+ /H+ antiporter-mediated Na+ extrusion from the root plays a minor role in the overall salt tolerance in barley. At the same time, a strong and positive correlation was found between root vacuolar Na+ sequestration ability and the overall salt tolerance. The inability of salt-sensitive genotypes to sequester Na+ in root vacuoles was in contrast to significantly higher expression levels of both HvNHX1 tonoplast Na+ /H+ antiporters and HvVP1 H+ -pumps compared with tolerant genotypes. These data are interpreted as a failure of sensitive varieties to prevent Na+ back-leak into the cytosol and existence of a futile Na+ cycle at the tonoplast. Taken together, our results demonstrated that root vacuolar Na+ sequestration but not exclusion from uptake played the main role in barley salinity tolerance, and suggested that the focus of the breeding programs should be shifted from targeting genes mediating Na+ exclusion from uptake by roots to more efficient root vacuolar Na+ sequestration.


Asunto(s)
Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Tolerancia a la Sal , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Genotipo , Hordeum/clasificación , Hordeum/genética , Transporte Iónico/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Salinidad , Homología de Secuencia de Aminoácido , Intercambiadores de Sodio-Hidrógeno/genética , Especificidad de la Especie , Estrés Fisiológico
7.
J Exp Bot ; 69(16): 3987-4001, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29897491

RESUMEN

The progress in plant breeding for salinity stress tolerance is handicapped by the lack of understanding of the specificity of salt stress signalling and adaptation at the cellular and tissue levels. In this study, we used electrophysiological, fluorescence imaging, and real-time quantitative PCR tools to elucidate the essentiality of the cytosolic Na+ extrusion in functionally different root zones (elongation, meristem, and mature) in a large number of bread and durum wheat accessions. We show that the difference in the root's ability for vacuolar Na+ sequestration in the mature zone may explain differential salinity stress tolerance between salt-sensitive durum and salt-tolerant bread wheat species. Bread wheat genotypes also had on average 30% higher capacity for net Na+ efflux from the root elongation zone, providing the first direct evidence for the essentiality of the root salt exclusion trait at the cellular level. At the same time, cytosolic Na+ accumulation in the root meristem was significantly higher in bread wheat, leading to the suggestion that this tissue may harbour a putative salt sensor. This hypothesis was then tested by investigating patterns of Na+ distribution and the relative expression level of several key genes related to Na+ transport in leaves in plants with intact roots and in those in which the root meristems were removed. We show that tampering with this sensing mechanism has resulted in a salt-sensitive phenotype, largely due to compromising the plant's ability to sequester Na+ in mesophyll cell vacuoles. The implications of these findings for plant breeding for salinity stress tolerance are discussed.


Asunto(s)
Citosol/metabolismo , Raíces de Plantas/metabolismo , Estrés Salino , Tolerancia a la Sal , Sodio/metabolismo , Triticum/metabolismo , Microscopía Confocal , Vacuolas/metabolismo
8.
Environ Res ; 164: 356-366, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29567421

RESUMEN

Phytoremediation is a green technique being increasingly used worldwide for various purposes including the treatment of municipal sewage sludge (MSS). Most plants proposed for this technique have high nutrient demands, and fertilization is often required to maintain soil fertility and nutrient balance while remediating the substrate. In this context, MSS could be a valuable source of nutrients (especially N and P) and water for plant growth. The aim of this study was to determine the capacity willow (Salix matsudana, cv Levante), poplar (Populus deltoides × Populus nigra, cv Orion), eucalyptus (Eucalyptus camaldulensis) and sunflower (Helianthus annuus) to clean MSS, which is slightly contaminated by trace elements (TEs) and organic pollutants, and to assess their physiological response to this medium. In particular, we aimed to evaluate the TE accumulation by different species as well as the decrease of TEs and organic pollutants in the sludge after one cropping cycle and the effect of MSS on plant growth and physiology. Since MSS did not show any detrimental effect on the biomass yield of any of the species tested, it was found to be a suitable growing medium for these species. TE phytoextraction rates depended on the species, with eucalyptus showing the highest accumulation for Cr, whereas sunflower exhibited the best performance for As, Cu and Zn. At the end of the trial, some TEs (i.e. Cr, Pb and Zn), n-alkanes and PCBs showed a significant concentration decrease in the sludge for all tested species. The highest Cr decrease was observed in pots with eucalyptus (57.4%) and sunflower (53.4%), whereas sunflower showed the highest Cu decrease (44.2%), followed by eucalyptus (41.2%), poplar (16.2%) and willow (14%). A significant decrease (41.1%) of Pb in the eucalyptus was observed. Zn showed a high decrease rate with sunflower (59.5%) and poplar (52%) and to a lesser degree with willow (35.3%) and eucalyptus (25.4%). The highest decrease in n-alkanes concentration in the sludge was found in willow (98.3%) and sunflower (97.3%), whereas eucalyptus has the lowest PCBs concentration (91.8%) in the sludge compared to the beginning of the trial. These results suggest new strategies (e.g. crop rotation and intercropping) to be adopted for a better management of this phytotechnology.


Asunto(s)
Biodegradación Ambiental , Salix , Aguas del Alcantarillado , Contaminantes del Suelo , Oligoelementos , Suelo
9.
Environ Sci Pollut Res Int ; 25(9): 9114-9131, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29340860

RESUMEN

The current field study aims to assess the suitability of four different plant species (i.e. poplar, willow, hemp and alfalfa) to be used for trace element (TE) (i.e. Cd, Cu, Ni, Pb and Zn) phytoextraction under hot-arid Mediterranean climate conditions. Plants were grown for two consecutive years on a moderate TE contaminated soil, supplied with water and mineral nutrients. The growth and physiological parameters were assessed throughout the trial to compare the response of plants to the environmental pollution, and TE uptake rates were measured for aboveground plant tissues. The phytoextraction rate for each species was expressed as a function of aboveground biomass yield and the TE uptake and translocation within the plant. Alfalfa played a significant role in reducing extractable Ni (60.6%) and Zn (46%) in the soil, whereas hemp reduced 32% of extractable Cd and 46% of extractable Pb; poplar decreased extractable Cd (37%), Ni (49%), Pb (46%) and Zn (63%); and willow reduced the extractable Zn (73%) compared to the beginning of the trial. No change in total TE content was observed; however, poplar and willow were able to extract and accumulate the highest amount of Zn (3200 and 5200 g ha-1 year-1 respectively) and Cu (182 and 116 g ha-1 year-1), whereas hemp, with 36 g ha-1 year-1, showed the best phytoextraction potential for Pb. Overall, we found a positive correlation between the phytoextraction rate and biomass yield, extractable TE concentration and translocation factor (TF) and a negative relationship with Ca concentration in the soil.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Oligoelementos/análisis , Biodegradación Ambiental , Biomasa , Clima , Metales Pesados/química , Populus , Salix , Suelo , Oligoelementos/química
10.
Plant Sci ; 264: 9-15, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28969806

RESUMEN

Sound is a fundamental form of energy and it has been suggested that plants can make use of acoustic cues to obtain information regarding their environments and alter and fine-tune their growth and development. Despite an increasing body of evidence indicating that it can influence plant growth and physiology, many questions concerning the effect of sound waves on plant growth and the underlying signalling mechanisms remains unknown. Here we show that in Arabidopsis thaliana, exposure to sound waves (200Hz) for 2 weeks induced positive phonotropism in roots, which grew towards to sound source. We found that sound waves triggered very quickly (within minutes) an increase in cytosolic Ca2+, possibly mediated by an influx through plasma membrane and a release from internal stock. Sound waves likewise elicited rapid reactive oxygen species (ROS) production and K+ efflux. Taken together these results suggest that changes in ion fluxes (Ca2+ and K+) and an increase in superoxide production are involved in sound perception in plants, as previously established in animals.


Asunto(s)
Arabidopsis/fisiología , Calcio/metabolismo , Raíces de Plantas/fisiología , Potasio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sonido , Membrana Celular/metabolismo , Transducción de Señal
11.
J Food Sci Technol ; 54(6): 1368-1376, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28559595

RESUMEN

Olive oil samples were obtained from six cultivars grown in different environments, and graded by chemical analyses as extra virgin (EVOOs). These were evaluated for flavors and off-flavors, and relative VOCs spectrum as determined by PTR-ToF-MS. A hierarchical clustering of Panel test data separated olive oil in three groups, one including the samples with perceived off-flavor (VOOs), regardless of cultivar and environment. The Pearson's correlation coefficients between the mass data from PTR-ToF-MS and the sensory characteristics perceived by the Panel test were determined. A mass-to-sensory attributes correlation index was calculated. A color-coded card was built up based on the intensities (ncps) of five selected protonated mass data that was able to distinguish EVOOs from VOOs olive oil samples.

12.
Tree Physiol ; 37(3): 380-388, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28338715

RESUMEN

Saline soils are highly heterogeneous in time and space, and this is a critical factor influencing plant physiology and productivity. Temporal changes in soil salinity can alter plant responses to salinity, and pre-treating plants with low NaCl concentrations has been found to substantially increase salt tolerance in different species in a process called acclimation. However, it still remains unclear whether this process is common to all plants or is only expressed in certain genotypes. We addressed this question by assessing the physiological changes to 100 mM NaCl in two contrasting olive cultivars (the salt-sensitive Leccino and the salt-tolerant Frantoio), following a 1-month acclimation period with 5 or 25 mM NaCl. The acclimation improved salt tolerance in both cultivars, but activated substantially different physiological adjustments in the tolerant and the sensitive cultivars. In the tolerant Frantoio the acclimation with 5 mM NaCl was more effective in increasing plant salt tolerance, with a 47% increase in total plant dry mass compared with non-acclimated saline plants. This enhanced biomass accumulation was associated with a 50% increase in K+ retention ability in roots. On the other hand, in the sensitive Leccino, although the acclimation process did not improve performance in terms of plant growth, pre-treatment with 5 and 25 mM NaCl substantially decreased salt-induced leaf cell ultrastructural changes, with leaf cell relatively similar to those of control plants. Taken together these results suggest that in the tolerant cultivar the acclimation took place primarily in the root tissues, while in the sensitive they occurred mainly at the shoot level.


Asunto(s)
Aclimatación , Olea/fisiología , Tolerancia a la Sal , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Salinidad , Cloruro de Sodio
13.
Front Genet ; 8: 6, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28194158

RESUMEN

Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior.

14.
Plant Physiol ; 172(4): 2445-2458, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27770060

RESUMEN

While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms conferring higher sensitivity of apical root cells to salinity in barley (Hordeum vulgare). We show that salinity application to the root apex arrests root growth in a highly tissue- and treatment-specific manner. Although salinity-induced transient net Na+ uptake was about 4-fold higher in the root apex compared with the mature zone, mature root cells accumulated more cytosolic and vacuolar Na+, suggesting that the higher sensitivity of apical cells to salt is not related to either enhanced Na+ exclusion or sequestration inside the root. Rather, the above differential sensitivity between the two zones originates from a 10-fold difference in K+ efflux between the mature zone and the apical region (much poorer in the root apex) of the root. Major factors contributing to this poor K+ retention ability are (1) an intrinsically lower H+-ATPase activity in the root apex, (2) greater salt-induced membrane depolarization, and (3) a higher reactive oxygen species production under NaCl and a larger density of reactive oxygen species-activated cation currents in the apex. Salinity treatment increased (2- to 5-fold) the content of 10 (out of 25 detected) amino acids in the root apex but not in the mature zone and changed the organic acid and sugar contents. The causal link between the observed changes in the root metabolic profile and the regulation of transporter activity is discussed.


Asunto(s)
Aclimatación , Hordeum/enzimología , Hordeum/fisiología , Raíces de Plantas/enzimología , Potasio/metabolismo , ATPasas de Translocación de Protón/metabolismo , Salinidad , Estrés Fisiológico , Aclimatación/efectos de los fármacos , Alantoína/farmacología , Cationes/metabolismo , Hordeum/efectos de los fármacos , Metaboloma/efectos de los fármacos , Metabolómica , Modelos Biológicos , Especificidad de Órganos/efectos de los fármacos , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Sodio/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos
15.
Front Plant Sci ; 7: 835, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379128

RESUMEN

In the symbiosis between rhizobia and legumes, host plants can form symbiotic root nodules with multiple rhizobial strains, potentially showing different symbiotic performances in nitrogen fixation. Here, we investigated the presence of mixed nodules, containing rhizobia with different degrees of mutualisms, and evaluate their relative fitness in the Sinorhizobium meliloti-Medicago sativa model symbiosis. We used three S. meliloti strains, the mutualist strains Rm1021 and BL225C and the non-mutualist AK83. We performed competition experiments involving both in vitro and in vivo symbiotic assays with M. sativa host plants. We show the occurrence of a high number (from 27 to 100%) of mixed nodules with no negative effect on both nitrogen fixation and plant growth. The estimation of the relative fitness as non-mutualist/mutualist ratios in single nodules shows that in some nodules the non-mutualist strain efficiently colonized root nodules along with the mutualist ones. In conclusion, we can support the hypothesis that in S. meliloti-M. sativa symbiosis mixed nodules are formed and allow non-mutualist or less-mutualist bacterial partners to be less or not sanctioned by the host plant, hence allowing a potential form of cheating behavior to be present in the nitrogen fixing symbiosis.

16.
J Plant Physiol ; 201: 1-8, 2016 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-27372277

RESUMEN

Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot.


Asunto(s)
Aclimatación/efectos de los fármacos , Tolerancia a la Sal/efectos de los fármacos , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Zea mays/fisiología , Clorofila/metabolismo , Iones , Microscopía Confocal , Concentración Osmolar , Desarrollo de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Potasio/metabolismo , Sodio/metabolismo , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
17.
Plant Cell ; 28(4): 930-48, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27053424

RESUMEN

Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Citoesqueleto de Actina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Unión a Tacrolimus/genética
18.
Funct Plant Biol ; 43(11): 1016-1027, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32480523

RESUMEN

Salt stress, among other abiotic stresses, has a high impact on crop yield. Salt tolerance is a multifactorial trait that involves the ability of cells to retain K ions, regulate reactive O species (ROS) production, and synthesise new molecules to cope with osmotic stress. In the present work, two different cultivars of Cucumis sativus L. (cv. Parys, sensitive; cv. Polan, tolerant) were selected based on their germination capabilities under 100mM NaCl. The capacity of these two cultivars to tolerate salt stress was analysed using several different physiological and genetic approaches. K+ fluxes from roots, as an immediate response to salinity, showed the higher ability of cv. Polan to maintain K+ compared with cv. Parys, according to the expression level of inward rectifying potassium channel 1 (AKT1). ROS production was also investigated in both cultivars and a higher basal ROS level was observed in cv. Polan than in cv. Parys. Concurrently, an increased basal level of respiratory burst oxidase homologue F (RBOHF) gene was also found, as well as a strong induction of the ethylene responsive factor 109 (ERF109) transcription factor after salt treatment in cv. Polan. Our data suggest that roots' ability to retain K+, a higher level of RBOHF and a strong induction of ERF109 should all be considered important components for salt tolerance in C. sativus.

19.
Front Plant Sci ; 6: 71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25750644

RESUMEN

Salinity stress tolerance is a physiologically complex trait that is conferred by the large array of interacting mechanisms. Among these, vacuolar Na(+) sequestration has always been considered as one of the key components differentiating between sensitive and tolerant species and genotypes. However, vacuolar Na(+) sequestration has been rarely considered in the context of the tissue-specific expression and regulation of appropriate transporters contributing to Na(+) removal from the cytosol. In this work, six bread wheat varieties contrasting in their salinity tolerance (three tolerant and three sensitive) were used to understand the essentiality of vacuolar Na(+) sequestration between functionally different root tissues, and link it with the overall salinity stress tolerance in this species. Roots of 4-day old wheat seedlings were treated with 100 mM NaCl for 3 days, and then Na(+) distribution between cytosol and vacuole was quantified by CoroNa Green fluorescent dye imaging. Our major observations were as follows: (1) salinity stress tolerance correlated positively with vacuolar Na(+) sequestration ability in the mature root zone but not in the root apex; (2) contrary to expectations, cytosolic Na(+) levels in root meristem were significantly higher in salt tolerant than sensitive group, while vacuolar Na(+) levels showed an opposite trend. These results are interpreted as meristem cells playing a role of the "salt sensor;" (3) no significant difference in the vacuolar Na(+) sequestration ability was found between sensitive and tolerant groups in either transition or elongation zones; (4) the overall Na(+) accumulation was highest in the elongation zone, suggesting its role in osmotic adjustment and turgor maintenance required to drive root expansion growth. Overall, the reported results suggest high tissue-specificity of Na(+) uptake, signaling, and sequestration in wheat roots. The implications of these findings for plant breeding for salinity stress tolerance are discussed.

20.
Development ; 142(4): 712-21, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25617431

RESUMEN

Cyclophilin A is a conserved peptidyl-prolyl cis-trans isomerase (PPIase) best known as the cellular receptor of the immunosuppressant cyclosporine A. Despite significant effort, evidence of developmental functions of cyclophilin A in non-plant systems has remained obscure. Mutations in a tomato (Solanum lycopersicum) cyclophilin A ortholog, DIAGEOTROPICA (DGT), have been shown to abolish the organogenesis of lateral roots; however, a mechanistic explanation of the phenotype is lacking. Here, we show that the dgt mutant lacks auxin maxima relevant to priming and specification of lateral root founder cells. DGT is expressed in shoot and root, and localizes to both the nucleus and cytoplasm during lateral root organogenesis. Mutation of ENTIRE/IAA9, a member of the auxin-responsive Aux/IAA protein family of transcriptional repressors, partially restores the inability of dgt to initiate lateral root primordia but not the primordia outgrowth. By comparison, grafting of a wild-type scion restores the process of lateral root formation, consistent with participation of a mobile signal. Antibodies do not detect movement of the DGT protein into the dgt rootstock; however, experiments with radiolabeled auxin and an auxin-specific microelectrode demonstrate abnormal auxin fluxes. Functional studies of DGT in heterologous yeast and tobacco-leaf auxin-transport systems demonstrate that DGT negatively regulates PIN-FORMED (PIN) auxin efflux transporters by affecting their plasma membrane localization. Studies in tomato support complex effects of the dgt mutation on PIN expression level, expression domain and plasma membrane localization. Our data demonstrate that DGT regulates auxin transport in lateral root formation.


Asunto(s)
Ciclofilina A/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Transporte Biológico , Ciclofilina A/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Brotes de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA