Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Chem Inf Model ; 63(17): 5433-5445, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37616385

RESUMEN

Oxidative stress is the consequence of an abnormal increase of reactive oxygen species (ROS). ROS are generated mainly during the metabolism in both normal and pathological conditions as well as from exposure to xenobiotics. Xenobiotics can, on the one hand, disrupt molecular machinery involved in redox processes and, on the other hand, reduce the effectiveness of the antioxidant activity. Such dysregulation may lead to oxidative damage when combined with oxidative stress overpassing the cell capacity to detoxify ROS. In this work, a green fluorescent protein (GFP)-tagged nuclear factor erythroid 2-related factor 2 (NRF2)-regulated sulfiredoxin reporter (Srxn1-GFP) was used to measure the antioxidant response of HepG2 cells to a large series of drug and drug-like compounds (2230 compounds). These compounds were then classified as positive or negative depending on cellular response and distributed among different modeling groups to establish structure-activity relationship (SAR) models. A selection of models was used to prospectively predict oxidative stress induced by a new set of compounds subsequently experimentally tested to validate the model predictions. Altogether, this exercise exemplifies the different challenges of developing SAR models of a phenotypic cellular readout, model combination, chemical space selection, and results interpretation.


Asunto(s)
Estrés Oxidativo , Xenobióticos , Humanos , Especies Reactivas de Oxígeno , Células Hep G2 , Estudios Prospectivos , Relación Estructura-Actividad
2.
J Chem Inf Model ; 63(12): 3629-3636, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37272707

RESUMEN

The discovery of novel molecules with desirable properties is a classic challenge in medicinal chemistry. With the recent advancements of machine learning, there has been a surge of de novo drug design tools. However, few resources exist that are user-friendly as well as easily customizable. In this application note, we present the new versatile open-source software package DrugEx for multiobjective reinforcement learning. This package contains the consolidated and redesigned scripts from the prior DrugEx papers including multiple generator architectures, a variety of scoring tools, and multiobjective optimization methods. It has a flexible application programming interface and can readily be used via the command line interface or the graphical user interface GenUI. The DrugEx package is publicly available at https://github.com/CDDLeiden/DrugEx.


Asunto(s)
Aprendizaje Profundo , Programas Informáticos , Diseño de Fármacos , Aprendizaje Automático
3.
J Cheminform ; 15(1): 22, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788579

RESUMEN

Generative deep learning models have emerged as a powerful approach for de novo drug design as they aid researchers in finding new molecules with desired properties. Despite continuous improvements in the field, a subset of the outputs that sequence-based de novo generators produce cannot be progressed due to errors. Here, we propose to fix these invalid outputs post hoc. In similar tasks, transformer models from the field of natural language processing have been shown to be very effective. Therefore, here this type of model was trained to translate invalid Simplified Molecular-Input Line-Entry System (SMILES) into valid representations. The performance of this SMILES corrector was evaluated on four representative methods of de novo generation: a recurrent neural network (RNN), a target-directed RNN, a generative adversarial network (GAN), and a variational autoencoder (VAE). This study has found that the percentage of invalid outputs from these specific generative models ranges between 4 and 89%, with different models having different error-type distributions. Post hoc correction of SMILES was shown to increase model validity. The SMILES corrector trained with one error per input alters 60-90% of invalid generator outputs and fixes 35-80% of them. However, a higher error detection and performance was obtained for transformer models trained with multiple errors per input. In this case, the best model was able to correct 60-95% of invalid generator outputs. Further analysis showed that these fixed molecules are comparable to the correct molecules from the de novo generators based on novelty and similarity. Additionally, the SMILES corrector can be used to expand the amount of interesting new molecules within the targeted chemical space. Introducing different errors into existing molecules yields novel analogs with a uniqueness of 39% and a novelty of approximately 20%. The results of this research demonstrate that SMILES correction is a viable post hoc extension and can enhance the search for better drug candidates.

4.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36077517

RESUMEN

Hypoxia and HIF signaling drive cancer progression and therapy resistance and have been demonstrated in breast cancer. To what extent breast cancer subtypes differ in their response to hypoxia has not been resolved. Here, we show that hypoxia similarly triggers HIF1 stabilization in luminal and basal A triple negative breast cancer cells and we use high throughput targeted RNA sequencing to analyze its effects on gene expression in these subtypes. We focus on regulation of YAP/TAZ/TEAD targets and find overlapping as well as distinct target genes being modulated in luminal and basal A cells under hypoxia. We reveal a HIF1 mediated, basal A specific response to hypoxia by which TAZ, but not YAP, is phosphorylated at Ser89. While total YAP/TAZ localization is not affected by hypoxia, hypoxia drives a shift of [p-TAZ(Ser89)/p-YAP(Ser127)] from the nucleus to the cytoplasm in basal A but not luminal breast cancer cells. Cell fractionation and YAP knock-out experiments confirm cytoplasmic sequestration of TAZ(Ser89) in hypoxic basal A cells. Pharmacological and genetic interference experiments identify c-Src and CDK3 as kinases involved in such phosphorylation of TAZ at Ser89 in hypoxic basal A cells. Hypoxia attenuates growth of basal A cells and the effect of verteporfin, a disruptor of YAP/TAZ-TEAD-mediated transcription, is diminished under those conditions, while expression of a TAZ-S89A mutant does not confer basal A cells with a growth advantage under hypoxic conditions, indicating that other hypoxia regulated pathways suppressing cell growth are dominant.


Asunto(s)
Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Neoplasias de la Mama Triple Negativas , Humanos , Hipoxia , Fosfoproteínas/metabolismo , Fosforilación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Proteínas Señalizadoras YAP
5.
J Med Chem ; 62(17): 7910-7922, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31437392

RESUMEN

Drug discovery programs of covalent irreversible, mechanism-based enzyme inhibitors often focus on optimization of potency as determined by IC50-values in biochemical assays. These assays do not allow the characterization of the binding activity (Ki) and reactivity (kinact) as individual kinetic parameters of the covalent inhibitors. Here, we report the development of a kinetic substrate assay to study the influence of the acidity (pKa) of heterocyclic leaving group of triazole urea derivatives as diacylglycerol lipase (DAGL)-α inhibitors. Surprisingly, we found that the reactivity of the inhibitors did not correlate with the pKa of the leaving group, whereas the position of the nitrogen atoms in the heterocyclic core determined to a large extent the binding activity of the inhibitor. This finding was confirmed and clarified by molecular dynamics simulations on the covalently bound Michaelis-Menten complex. A deeper understanding of the binding properties of covalent serine hydrolase inhibitors is expected to aid in the discovery and development of more selective covalent inhibitors.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Compuestos Heterocíclicos/farmacología , Lipoproteína Lipasa/antagonistas & inhibidores , Simulación de Dinámica Molecular , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Humanos , Cinética , Lipoproteína Lipasa/metabolismo , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA