Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39253479

RESUMEN

Phage-encoded anti-CRISPR (Acr) proteins inhibit CRISPR-Cas systems to allow phage replication and lysogeny maintenance. Most of the Acrs characterized to date are stable stoichiometric inhibitors, and while enzymatic Acrs have been characterized biochemically, little is known about their potency, specificity, and reversibility. Here, we examine AcrIF11, a widespread phage and plasmid-encoded ADP-ribosyltransferase (ART) that inhibits the Type I-F CRISPR-Cas system. We present an NMR structure of an AcrIF11 homolog that reveals chemical shift perturbations consistent with NAD (cofactor) binding. In experiments that model both lytic phage replication and MGE/lysogen stability under high targeting pressure, AcrIF11 is a highly potent CRISPR-Cas inhibitor and more robust to Cas protein level fluctuations than stoichiometric inhibitors. Furthermore, we demonstrate that AcrIF11 is remarkably specific, predominantly ADP-ribosylating Csy1 when expressed in P. aeruginosa. Given the reversible nature of ADP-ribosylation, we hypothesized that ADPr eraser enzymes (macrodomains) could remove ADPr from Csy1, a potential limitation of PTM-based CRISPR inhibition. We demonstrate that diverse macrodomains can indeed remove the modification from Csy1 in P. aeruginosa lysate. Together, these experiments connect the in vitro observations of AcrIF11's enzymatic activity to its potent and specific effects in vivo, clarifying the advantages and drawbacks of enzymatic Acrs in the evolutionary arms race between phages and bacteria.

2.
PLoS Pathog ; 18(3): e1010363, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35333915

RESUMEN

Toxoplasmosis is caused by Toxoplasma gondii and in immunocompromised patients it may lead to seizures, encephalitis or death. The conserved enzyme prolyl-tRNA synthetase (PRS) is a validated druggable target in Toxoplasma gondii but the traditional 'single target-single drug' approach has its caveats. Here, we describe two potent inhibitors namely halofuginone (HFG) and a novel ATP mimetic (L95) that bind to Toxoplasma gondii PRS simultaneously at different neighbouring sites to cover all three of the enzyme substrate subsites. HFG and L95 act as one triple-site inhibitor in tandem and form an unusual ternary complex wherein HFG occupies the 3'-end of tRNA and the L-proline (L-pro) binding sites while L95 occupies the ATP pocket. These inhibitors exhibit nanomolar IC50 and EC50 values independently, and when given together reveal an additive mode of action in parasite inhibition assays. This work validates a novel approach and lays a structural framework for further drug development based on simultaneous targeting of multiple pockets to inhibit druggable proteins.


Asunto(s)
Aminoacil-ARNt Sintetasas , Toxoplasma , Toxoplasmosis , Adenosina Trifosfato/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Desarrollo de Medicamentos , Humanos , Toxoplasma/metabolismo
3.
Chembiochem ; 22(14): 2468-2477, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33969584

RESUMEN

Plasmodium falciparum lysyl-tRNA synthetase (PfKRS) represents a promising therapeutic anti-malarial target. Cladosporin was identified as a selective and potent PfKRS inhibitor but lacks metabolic stability. Here, we report chemical synthesis, biological evaluation and structural characterization of analogues where the tetrahydropyran (THP) frame of cladosporin is replaced with the piperidine ring bearing functional group variations. Thermal binding, enzymatic, kinetic and parasitic assays complemented with X-ray crystallography reveal compounds that are moderate in potency. Co-crystals of Cla-B and Cla-C with PfKRS reveal key atomic configurations that allow drug binding to and inhibition of the enzyme. Collectively these piperidine ring scaffold inhibitors lay a framework for further structural editing and functional modifications of the cladosporin scaffold to obtain a potent lead.


Asunto(s)
Plasmodium falciparum
4.
ACS Infect Dis ; 7(6): 1777-1794, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33843204

RESUMEN

Here we have described a systematic structure activity relationship (SAR) of a set of compounds inspired from cladosporin, a tool compound that targets parasite (Plasmodium falciparum) lysyl tRNA synthetase (KRS). Four sets of analogues, synthesized based on point changes in the chemical scaffold of cladosporin and other logical modifications and hybridizations, were assessed using high throughput enzymatic and parasitic assays along with in vitro pharmacokinetics. Co-crystallization of the most potent compound in our series (CL-2) with PfKRS revealed its structural basis of enzymatic binding and potency. Further, we report that CL-2 has performed better than cladosporin in terms of metabolic stability. It thus represents a new lead for further optimization toward the development of antimalarial drugs. Collectively, along with a lead compound, the series offers insights on how even the slightest chemical modification might play an important role in enhancing or decreasing the potency of a chemical scaffold.


Asunto(s)
Malaria , Parásitos , Animales , Isocumarinas , Plasmodium falciparum
5.
J Med Chem ; 61(13): 5664-5678, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29779382

RESUMEN

The dependence of drug potency on diastereomeric configurations is a key facet. Using a novel general divergent synthetic route for a three-chiral center antimalarial natural product cladosporin, we built its complete library of stereoisomers (cladologs) and assessed their inhibitory potential using parasite-, enzyme-, and structure-based assays. We show that potency is manifest via tetrahyropyran ring conformations that are housed in the ribose binding pocket of parasite lysyl tRNA synthetase (KRS). Strikingly, drug potency between top and worst enantiomers varied 500-fold, and structures of KRS-cladolog complexes reveal that alterations at C3 and C10 are detrimental to drug potency whereas changes at C3 are sensed by rotameric flipping of glutamate 332. Given that scores of antimalarial and anti-infective drugs contain chiral centers, this work provides a new foundation for focusing on inhibitor stereochemistry as a facet of antimicrobial drug development.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Isocumarinas/química , Isocumarinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/metabolismo , Evaluación Preclínica de Medicamentos , Isocumarinas/metabolismo , Lisina-ARNt Ligasa/química , Lisina-ARNt Ligasa/metabolismo , Modelos Moleculares , Plasmodium falciparum/enzimología , Conformación Proteica , Estereoisomerismo
6.
Drug Discov Today ; 23(6): 1233-1240, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29408369

RESUMEN

Malaria remains a major infectious disease and, despite incidence reduction, it threatens resurgence in drug-resistant forms. Antimalarial drugs remain the mainstay of therapeutic options and hence there is a constant need to identify and validate new druggable targets. Plasmodium falciparum aminoacyl-tRNA synthetases (Pf-aaRSs) drive protein translation and are potent targets for development of next-generation antimalarials. Here, we detail advances made in structural-biology-based investigations in Pf-aaRSs and discuss their distribution of druggable pockets. This review establishes a platform for systematic experimental dissection of malarial parasite aaRSs as a new focus for sustained drug development efforts against malaria.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Plasmodium falciparum/enzimología , Animales , Citoplasma/enzimología , Humanos , Malaria/tratamiento farmacológico , Terapia Molecular Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA