RESUMEN
The fine analysis of cell components during the generation of pluripotent cells and their comparison to bone fide human embryonic stem cells (hESCs) are valuable tools to understand their biological behavior. In this report, human mesenchymal cells (hMSCs) generated from the human ES cell line H9, were reprogrammed back to induced pluripotent state using Oct-4, Sox2, Nanog, and Lin28 transgenes. Human induced pluripotent stem cells (hIPSCs) were analyzed using electron microscopy and compared with regard to the original hESCs and the hMSCs from which they were derived. This analysis shows that hIPSCs and the original hESCs are morphologically undistinguishable but differ from the hMSCs with respect to the presence of several morphological features of undifferentiated cells at both the cytoplasmic (ribosomes, lipid droplets, glycogen, scarce reticulum) and nuclear levels (features of nuclear plasticity, presence of euchromatin, reticulated nucleoli). We show that hIPSC colonies generated this way presented epithelial aspects with specialized junctions highlighting morphological criteria of the mesenchymal-epithelial transition in cells engaged in a successful reprogramming process. Electron microscopic analysis revealed also specific morphological aspects of partially reprogrammed cells. These results highlight the valuable use of electron microscopy for a better knowledge of the morphological aspects of IPSC and cellular reprogramming.
RESUMEN
Brachial plexus injury is frequent after traffic accident in adults or shoulder dystocia in newborns. Whereas surgery can restore arm movements, therapeutic options are missing for sensory defects. Dorsal root (DR) ganglion neurons convey sensory information to the central nervous system (CNS) through a peripheral and a central axon. Central axons severed through DR section or avulsion during brachial plexus injury inefficiently regenerate and do not reenter the spinal cord. We show that a combination of microsurgery and gene therapy circumvented the functional barrier to axonal regrowth at the peripheral and CNS interface. After cervical DR section in rats, microsurgery restored anatomical continuity through a nerve graft that laterally connected the injured DR to an intact DR. Gene transfer to cells in the nerve graft induced the local release of neurotrophin-3 (NT-3) and glial cell line-derived neurotrophic factor (GDNF) and stimulated axonal regrowth. Central DR ganglion axons efficiently regenerated and invaded appropriate areas of the spinal cord dorsal horn, leading to partial recovery of nociception and proprioception. Microsurgery created conditions for functional restoration of DR ganglion central axons, which were improved in combination with gene therapy. This combination treatment provides means to reduce disability due to somatosensory defects after brachial plexus injury.
Asunto(s)
Ganglios Espinales/lesiones , Ganglios Espinales/cirugía , Terapia Genética/métodos , Traumatismos de la Médula Espinal/cirugía , Traumatismos de la Médula Espinal/terapia , Raíces Nerviosas Espinales/lesiones , Raíces Nerviosas Espinales/cirugía , Animales , Electrofisiología , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Vectores Genéticos/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Inmunohistoquímica , Masculino , Microscopía Electrónica de Transmisión , Regeneración Nerviosa/genética , Regeneración Nerviosa/fisiología , Neurotrofina 3/genética , Neurotrofina 3/fisiología , Reacción en Cadena de la Polimerasa , Ratas , Ratas Endogámicas F344 , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Raíces Nerviosas Espinales/metabolismoRESUMEN
Loss of dorsal root ganglion neuron, or injury to dorsal roots, induces permanent somatosensory defect without therapeutic option. We explored an approach to restoring hind limb somatosensory innervation after elimination of L4, L5 and L6 dorsal root ganglion neurons in rats. Somatosensory pathways were reconstructed by connecting L4, L5 and L6 lumbar dorsal roots to T10, T11 and T12 intercostal nerves, respectively, thus allowing elongation of thoracic ganglion neuron peripheral axons into the sciatic nerve. Connection of thoracic dorsal root ganglion neurons to peripheral tissues was documented 4 and 7 months after injury. Myelinated and unmyelinated fibers regrew in the sciatic nerve. Nerve terminations expressing calcitonin-gene-related-peptide colonized the footpad skin. Retrograde tracing showed that T10, T11 and T12 dorsal root ganglion neurons expressing calcitonin-gene-related-peptide or the neurofilament RT97 projected axons to the sciatic nerve and the footpad skin. Recording of somatosensory evoked potentials in the upper spinal cord indicated connection between the sciatic nerve and the central nervous system. Hind limb retraction in response to nociceptive stimulation of the reinnervated footpads and reversion of skin lesions suggested partial recovery of sensory function. Proprioceptive defects persisted. Delayed somatosensory reinnervation of the hind limb after destruction of lumbar dorsal root neurons in rats indicates potential approaches to reduce chronic disability after severe injury to somatosensory pathways.