RESUMEN
Rapamycin (rapa), an immunosuppressive medication, has demonstrated considerable effectiveness in reducing organ transplant rejection and treating select autoimmune diseases. However, the standard oral administration of rapa results in poor bioavailability, broad biodistribution, and harmful off-target effects, necessitating improved drug delivery formulations. Polymeric microparticles (MPs) are one such solution and have demonstrated promise in pre-clinical studies to improve the therapeutic efficacy of rapa. Nevertheless, MP formulations are highly diverse, and fabrication method selection is a critical consideration in formulation design. Herein, we compared common fabrication processes for the development of rapa-loaded MPs. Using the biopolymer acetalated dextran (Ace-DEX), rapa-loaded MPs were fabricated by both emulsion (homogenization and sonication) and spray (electrospray and spray drying) methods, and resultant MPs were characterized for size, morphology, surface charge, and drug release kinetics. MPs were then screened in LPS-stimulated macrophages to gauge immunosuppressive efficacy relative to soluble drug. We determined that homogenized MPs possessed the most optimal combination of sizing, tunable drug release kinetics, and immunosuppressive efficacy, and we subsequently demonstrated that these characteristics were maintained across a range of potential rapa loadings. Further, we performed in vivo trafficking studies to evaluate depot kinetics and cellular uptake at the injection site after subcutaneous injection of homogenized MPs. We observed preferential MP uptake by dendritic cells at the depot, highlighting the potential for MPs to direct more targeted drug delivery. Our results emphasize the significance of fabrication method in modulating the efficacy of MP systems and inform improved formulation design for the delivery of rapa.
RESUMEN
Influenza infections are a health public problem worldwide every year with the potential to become the next pandemic. Vaccination is the most effective strategy to prevent future influenza outbreaks, however, influenza vaccines need to be reformulated each year to provide protection due to viral antigenic drift and shift. As more efficient influenza vaccines are needed, it is relevant to recapitulate strategies to improve the immunogenicity and broad reactivity of the current vaccines. Here, we review the current approved vaccines in the U.S. market and the platform used for their production. We discuss the different approaches to develop a broadly reactive vaccine as well as reviewing the adjuvant systems that are under study for being potentially included in future influenza vaccine formulations. The main components of the immune system involved in achieving a protective immune response are reviewed and how they participate in the trafficking of particles systemically and in the mucosa. Finally we describe and classify, according to their physicochemical properties, some of the potential micro and nano-particulate platforms that can be used as delivery systems for parenteral and mucosal vaccinations.
RESUMEN
In humans, seasonal influenza viruses cause epidemics. Avian influenza viruses are of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against all influenza strains. The cyclic GMP-AMP (cGAMP) is a promising adjuvant for subunit vaccines, which promotes type I interferons' production through the stimulator of interferon genes (STING) pathway. The encapsulation of cGAMP in acetalated dextran (Ace-DEX) microparticles (MPs) enhances its intracellular delivery. In this study, the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology was used to generate H1, H3, and H5 vaccine candidates. Monovalent and multivalent COBRA HA vaccines formulated with cGAMP Ace-DEX MPs were evaluated in mice for protective antibody responses. cGAMP MPs adjuvanted COBRA HA vaccines elicited robust antigen-specific antibodies following vaccination. Compared with COBRA HA vaccine groups with no adjuvant or blank MPs, the cGAMP MPs enhanced HAI activity elicited by COBRA HA vaccines. The HAI activity was not significantly different between cGAMP MPs adjuvanted monovalent or multivalent COBRA HA vaccines. The cGAMP MPs adjuvanted COBRA vaccine groups had higher antigen-specific IgG2a-binding titers than the COBRA vaccine groups with no adjuvant or blank MPs. The COBRA vaccines formulated with cGAMP MPs mitigated diseases caused by influenza viral challenge and decreased pulmonary viral titers in mice. Therefore, the formulation of COBRA vaccines plus cGAMP MPs is a promising universal influenza vaccine that elicits protective immune responses against human seasonal and pre-pandemic strains. IMPORTANCE: Influenza viruses cause severe respiratory disease, particularly in the very young and the elderly. Next-generation influenza vaccines are needed to protect against new influenza variants. This report used a promising adjuvant, cyclic GMP-AMP (cGAMP), to enhance the elicited antibodies by an improved influenza hemagglutinin candidate and protect against influenza virus infection. Overall, adding adjuvants to influenza vaccines is an effective method to improve vaccines.
Asunto(s)
Adyuvantes Inmunológicos , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza , Nucleótidos Cíclicos , Infecciones por Orthomyxoviridae , Animales , Femenino , Humanos , Ratones , Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Ratones Endogámicos BALB C , Nucleótidos Cíclicos/inmunología , Nucleótidos Cíclicos/administración & dosificación , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunologíaRESUMEN
New approaches to treat autoimmune diseases are needed, and we can be inspired by mechanisms in immune tolerance to guide the design of these approaches. Efferocytosis, the process of phagocyte-mediated apoptotic cell (AC) disposal, represents a potent tolerogenic mechanism that we could draw inspiration from to restore immune tolerance to specific autoantigens. ACs engage multiple avenues of the immune response to redirect aberrant immune responses. Two such avenues are: phosphatidylserine on the outer leaflet of the cell and engaging the aryl hydrocarbon receptor (AhR) pathway. We incorporated these two avenues into one acetalated dextran (Ace-DEX) microparticle (MP) for evaluation in vitro. First phosphatidylserine (PS) was incorporated into Ace-DEX MPs and evaluated for cellular association and mediators of cell tolerance including IL-10 production and M2 associated gene expression when particles were cultured with peritoneal macrophages (PMacs). Further PS Ace-DEX MPs were evaluated as an agent to suppress LPS stimulated PMacs. Then, AhR agonist 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) was incorporated into Ace-DEX MPs and expression of M2 and IL-10 genes was evaluated in PMacs. Further the ITE and PS Ace-DEX MPs (PS/ITE MPs) were evaluated for suppression of T cell priming and Th1 polarization. Our results indicate that the PS/ITE-MPs stimulated anti-inflammatory cytokine expression and suppressed inflammation following LPS stimulation of PMacs. Moreover, PS/ITE MPs induced the anti-inflammatory enzyme IDO1 and suppressed macrophage-mediated T cell priming and Th1 polarization. These findings suggest that PS and ITE-loaded Ace-DEX MPs could be a promising therapeutic tool for suppressing inflammation.
RESUMEN
Influenza outbreaks are a major burden worldwide annually. While seasonal vaccines do provide protection against infection, they are limited in that they need to be updated every year to account for the constantly mutating virus. Recently, lipid nanoparticles (LNPs) encapsulating mRNA have seen major success as a vaccine platform for SARS-CoV-2. Herein, we applied LNPs to deliver an mRNA encoding a computationally optimized broadly active (COBRA) influenza immunogen. These COBRA mRNA LNPs induced a broadly active neutralizing antibody response and protection after lethal influenza challenge. To further increase the immunogenicity of the COBRA mRNA LNPs, we combined them with acetalated dextran microparticles encapsulating a STING agonist. Contrary to recent findings, the STING agonist decreased the immunogenicity of the COBRA mRNA LNPs which was likely due to a decrease in mRNA translation as shown in vitro. Overall, this work aids in future selection of adjuvants to use with mRNA LNP vaccines.
Asunto(s)
Vacunas contra la Influenza , Nanovacunas , Nucleótidos Cíclicos , Animales , Femenino , Ratones , Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Dextranos/química , Dextranos/administración & dosificación , Inmunogenicidad Vacunal , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Lípidos/química , Lípidos/administración & dosificación , Liposomas , Ratones Endogámicos BALB C , Vacunas de ARNm , Nanopartículas/administración & dosificación , Nanopartículas/química , Nanovacunas/administración & dosificación , Nanovacunas/química , Nucleótidos Cíclicos/administración & dosificación , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Polímeros/química , Polímeros/administración & dosificación , ARN Mensajero/administración & dosificación , ARN Mensajero/inmunologíaRESUMEN
Vaccines represent a pivotal health advancement for preventing infection. However, because carrier systems with repeated administration can invoke carrier-targeted immune responses that diminish subsequent immune responses (e.g., PEG antibodies), there is a continual need to develop novel vaccine platforms. Zinc carnosine microparticles (ZnCar MPs), which are composed of a one-dimensional coordination polymer formed between carnosine and the metal ion zinc, have exhibited efficacy in inducing an immune response against influenza. However, ZnCar MPs' limited suspendability hinders clinical application. In this study, we address this issue by mixing mannan, a polysaccharide derived from yeast, with ZnCar MPs. We show that the addition of mannan increases the suspendability of this promising vaccine formulation. Additionally, since mannan is an adjuvant, we illustrate that the addition of mannan increases the antibody response and T cell response when mixed with ZnCar MPs. Mice vaccinated with mannan + OVA/ZnCar MPs had elevated serum IgG and IgG1 levels in comparison to vaccination without mannan. Moreover, in the mannan + OVA/ZnCar MPs vaccinated group, mucosal washes demonstrated increased IgG, IgG1, and IgG2c titers, and antigen recall assays showed enhanced IFN-γ production in response to MHC-I and MHC-II immunodominant peptide restimulation, compared to the vaccination without mannan. These findings suggest that the use of mannan mixed with ZnCar MPs holds potential for subunit vaccination and its improved suspendability further promotes clinical translation.
Asunto(s)
Carnosina , Mananos , Vacunas de Subunidad , Zinc , Mananos/química , Mananos/administración & dosificación , Mananos/inmunología , Animales , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Zinc/química , Zinc/administración & dosificación , Carnosina/administración & dosificación , Carnosina/química , Femenino , Inmunoglobulina G/sangre , Ratones , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/química , Ovalbúmina/inmunología , Ovalbúmina/administración & dosificación , Ratones Endogámicos C57BL , Polímeros/química , Polímeros/administración & dosificación , Ratones Endogámicos BALB C , Portadores de Fármacos/químicaRESUMEN
Influenza viruses cause a common respiratory disease known as influenza. In humans, seasonal influenza viruses can lead to epidemics, with avian influenza viruses of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against seasonal and pre-pandemic influenza virus strains. The cyclic GMP-AMP (cGAMP) is a promising adjuvant for subunit vaccines that promotes type I interferons production through the stimulator of interferon genes (STING) pathway. The encapsulation of cGAMP in acetalated dextran (Ace-DEX) microparticles (MPs) enhances its intracellular delivery. In this study, the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology was used to generate H1, H3, and H5 vaccine candidates. Monovalent and multivalent COBRA HA vaccines formulated with cGAMP Ace-DEX MPs were evaluated in a mouse model for antibody responses and protection against viral challenge. Serological analysis showed that cGAMP MPs adjuvanted monovalent and multivalent COBRA vaccines elicited robust antigen-specific antibody responses after a prime-boost vaccination and antibody titers were further enhanced after second boost. Compared to COBRA vaccine groups with no adjuvant or blank MPs, the cGAMP MPs enhanced HAI antibody responses against COBRA vaccination. The HAI antibody titers were not significantly different between cGAMP MPs adjuvanted monovalent and multivalent COBRA vaccine groups for most of the viruses tested in panels. The cGAMP MPs adjuvanted COBRA vaccines groups had higher antigen-specific IgG2a binding titers than the COBRA vaccine groups with no adjuvant or blank MPs. The COBRA vaccines formulated with cGAMP MPs mitigated disease caused by influenza viral challenge and decreased pulmonary viral titers in mice. Therefore, the formulation of COBRA vaccines plus cGAMP MPs is a promising universal influenza vaccine that elicits protective immune responses against human seasonal and pre-pandemic strains.
RESUMEN
Influenza virus outbreaks are a major burden worldwide each year. Current vaccination strategies are inadequate due to antigenic drift/shift of the virus and the elicitation of low immune responses. The use of computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) immunogens subvert the constantly mutating viruses; however, they are poorly immunogenic on their own. To increase the immunogenicity of subunit vaccines such as this, adjuvants can be delivered with the vaccine. For example, agonists of the stimulator of interferon genes (STING) have proven efficacy as vaccine adjuvants. However, their use in high-risk populations most vulnerable to influenza virus infection has not been closely examined. Here, we utilize a vaccine platform consisting of acetalated dextran microparticles loaded with COBRA HA and the STING agonist cyclic GMP-AMP. We examine the immunogenicity of this platform in mouse models of obesity, aging, and chemotherapy-induced immunosuppression. Further, we examine vaccine efficacy in collaborative cross mice, a genetically diverse population that mimics human genetic heterogeneity. Overall, this vaccine platform had variable efficacy in these populations supporting work to better tailor adjuvants to specific populations.
RESUMEN
Vaccines have historically faced challenges regarding stability, especially in regions lacking a robust cold chain infrastructure. This review delves into established and emergent techniques to improve the thermostability of vaccines. We discuss the widely practiced lyophilization method, effectively transforming liquid vaccine formulations into a solid powdered state, enhancing storage and transportation ability. However, potential protein denaturation during lyophilization necessitates alternative stabilization methods. Cryoprotectants, namely, starch and sugar molecules, have shown promise in protecting vaccine antigens and adjuvants from denaturation and augmenting the stability of biologics during freeze-drying. Biomineralization, a less studied yet innovative approach, utilizes inorganic or organic-inorganic hybrids to encapsulate biological components of vaccines with a particular emphasis on metal-organic coordination polymers. Encapsulation in organic matrices to form particles or microneedles have also been studied in the context of vaccine thermostability, showing some ability to store outside the cold-chain. Unfortunately, few of these techniques have advanced to clinical trials that evaluate differences in storage conditions. Nonetheless, early trials suggest that alternative storage techniques are viable and emphasize the need for more comprehensive studies. This review underscores the pressing need for heat-stable vaccines, especially in light of the increasing global distribution challenges. Combining traditional methods with novel approaches holds promise for the future adaptability of vaccine distribution and use.
Asunto(s)
Calor , Vacunas , Humanos , Estabilidad de Medicamentos , Composición de Medicamentos/métodos , Vacunación , Liofilización/métodosRESUMEN
The most common influenza vaccines are inactivated viruses produced in chicken eggs, which is a time-consuming production method with variable efficacy due to mismatches of the vaccine strains to the dominant circulating strains. Subunit-based vaccines provide faster production times in comparison to the traditional egg-produced vaccines but often require the use of an adjuvant to elicit a highly protective immune response. However, the current FDA approved adjuvant for influenza vaccines (MF59) elicits a primarily helper T-cell type 2 (Th2)-biased humoral immune response. Adjuvants that can stimulate a Th1 cellular response are correlated to have more robust protection against influenza. The cyclic dinucleotide cGAMP has been shown to provide a potent Th1 response but requires the use of a delivery vehicle to best initiate its signalling pathway in the cytosol. Herein, acetalated dextran (Ace-DEX) was used as the polymer to fabricate microparticles (MPs) via double-emulsion, electrospray, and spray drying methods to encapsulate cGAMP. This study compared each fabrication method's ability to encapsulate and retain the hydrophilic adjuvant cGAMP. We compared their therapeutic efficacy to Addavax, an MF59-like adjuvant, and cGAMP Ace-DEX MPs provided a stronger Th1 response in vaccinated BALB/c mice. Furthermore, we compared Ace-DEX MPs to spray dried MPs composed from a commonly used polymer for drug delivery, poly(lactic-co-glycolic acid) (PLGA). We observed that all Ace-DEX MPs elicited similar humoral and cellular responses to the PLGA MPs. Overall, the results shown here indicate Ace-DEX can perform similarly to PLGA as a polymer for drug delivery and that spray drying can provide an efficient way to produce MPs to encapsulate cGAMP and stimulate the immune system.
Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Escualeno , Animales , Ratones , Humanos , Dextranos , Polisorbatos , Vacunas de Subunidad , Adyuvantes Inmunológicos , Adyuvantes FarmacéuticosRESUMEN
Current seasonal influenza vaccines are limited in that they need to be reformulated every year in order to account for the constant mutation of the virus. Hemagglutinin (HA) immunogens have been developed using a computationally optimized broadly reactive antigen (COBRA) methodology, which are able to elicit an antibody response that neutralizes antigenically distinct influenza strains; however, subunit proteins are not immunogenic enough on their own to generate a substantial immune response. Due to this, different delivery strategies and adjuvants can be used to improve immunogenicity. Recently, we reported a new coordination polymer composed of the dipeptide carnosine and zinc (ZnCar) that is able to deliver protein antigens along with CpG to generate a potent immune response. In the present work, ZnCar was used to deliver the COBRA HA immunogen Y2 and the adjuvant CpG. We incorporated Y2 into ZnCar using two different methods to assess which would be the most immunogenic. Mice vaccinated with Y2 and CpG complexed with ZnCar showed an improved humoral and cellular response when compared to mice vaccinated with soluble Y2 and CpG. Further, we demonstrate in vitro that when Y2 and CpG are coordinated with ZnCar, they are protected from degradation at 40 °C for 3 months or 24 °C for 6 months. Overall, ZnCar shows promise as a delivery vehicle for subunit vaccines, given its superior immunogenicity and in vitro storage stability.
Asunto(s)
Carnosina , Vacunas contra la Influenza , Gripe Humana , Animales , Ratones , Humanos , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , PolímerosRESUMEN
The influenza A virus causes substantial morbidity and mortality worldwide every year and poses a constant threat of an emergent pandemic. Seasonal influenza vaccination strategies fail to provide complete protection against infection due to antigenic drift and shift. A universal vaccine targeting a conserved influenza epitope could substantially improve current vaccination strategies. The ectodomain of the matrix 2 protein (M2e) of influenza is a highly conserved epitope between virus strains but is also poorly immunogenic. Administration of M2e and the immunostimulatory stimulator of interferon genes (STING) agonist 3'3'-cyclic guanosine-adenosine monophosphate (cGAMP) encapsulated in microparticles made of acetalated dextran (Ace-DEX) has previously been shown to be effective for increasing the immunogenicity of M2e, primarily through T-cell-mediated responses. Here, the immunogenicity of Ace-DEX MPs delivering M2e was further improved by conjugating the M2e peptide to the particle surface in an effort to affect B-cell responses more directly. Conjugated or encapsulated M2e co-administered with Ace-DEX MPs containing cGAMP were used to vaccinate mice, and it was shown that two or three vaccinations could fully protect against a lethal influenza challenge, while only the surface-conjugated antigen constructs could provide some protection against lethal challenge with only one vaccination. Additionally, the use of a reducible linker augmented the T-cell response to the antigen. These results show the utility of conjugating M2e to the surface of a particle carrier to increase its immunogenicity for use as the antigen in a universal influenza vaccine.
Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Animales , Ratones , Humanos , Gripe Humana/prevención & control , Dextranos/química , Epítopos , Ratones Endogámicos BALB C , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Anticuerpos AntiviralesRESUMEN
Currently licensed vaccine adjuvants offer limited mucosal immunity, which is needed to better combat respiratory infections such as influenza. Mast cells (MCs) are emerging as a target for a new class of mucosal vaccine adjuvants. Here, we developed and characterized a nanoparticulate adjuvant composed of an MC activator [mastoparan-7 (M7)] and a TLR ligand (CpG). This novel nanoparticle (NP) adjuvant was co-formulated with a computationally optimized broadly reactive antigen (COBRA) for hemagglutinin (HA), which is broadly reactive against influenza strains. M7 was combined at different ratios with CpG and tested for in vitro immune responses and cytotoxicity. We observed significantly higher cytokine production in dendritic cells and MCs with the lowest cytotoxicity at a charge-neutralizing ratio of nitrogen/phosphate = 1 for M7 and CpG. This combination formed spherical NPs approximately 200 nm in diameter with self-assembling capacity. Mice were vaccinated intranasally with COBRA HA and M7-CpG NPs in a prime-boost-boost schedule. Vaccinated mice had significantly higher antigen-specific antibody responses (IgG and IgA) in serum and mucosa compared with controls. Splenocytes from vaccinated mice had significantly increased cytokine production upon antigen recall and the presence of central and effector memory T cells in draining lymph nodes. Finally, co-immunization with NPs and COBRA HA induced influenza H3N2-specific HA inhibition antibody titers across multiple strains and partially protected mice from a challenge against an H3N2 virus. These results illustrate that the M7-CpG NP adjuvant combination can induce a protective immune response with a broadly reactive influenza antigen via mucosal vaccination.
Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Adyuvantes de Vacunas , Subtipo H3N2 del Virus de la Influenza A , Anticuerpos Antivirales , Adyuvantes Inmunológicos , Vacunación , Adyuvantes Farmacéuticos , Hemaglutininas , CitocinasRESUMEN
The discovery of new immune-modulating biomaterials is of significant value to immuno-engineering and therapy development. Here, we discovered that single-tailed heterocyclic carboxamide lipids preferentially modulated macrophages - but not dendritic cells - by interfering with sphingosine-1-phosphate-related pathways, consequently increasing interferon alpha expression. We further performed extensive downstream correlation analysis and determined key factors in physicochemical properties likely to modulate pro-inflammatory and anti-inflammatory immune responses. These properties will be useful for the rational design of the next generation of cell type-specific immune-modulating lipids.
Asunto(s)
Materiales Biocompatibles , Macrófagos , Macrófagos/metabolismo , Materiales Biocompatibles/metabolismo , Inmunidad , LípidosRESUMEN
Recently, there has been increasing interest in the activation of mast cells to promote vaccine efficacy. Several mast cell activating (MCA) compounds have been reported such as M7 and Compound 48/80 (C48/80). While these MCAs have been proven to be efficacious vaccine adjuvants, their translatability is limited by batch-to-batch variability, challenging large-scale manufacturing, and poor in vivo stability for the M7 peptide. Due to this, high throughput screening was performed to identify small molecule MCAs. Several potent MCAs were identified via this screening, but the in vivo translatability of the compounds was limited due to their poor aqueous solubility. To enhance the delivery of these MCAs we encapsulated them in acetalated dextran (Ace-DEX) microparticles (MPs). We have previously utilized Ace-DEX MPs for vaccine delivery due to their passive targeting to phagocytic cells, acid sensitivity, and tunable degradation. Four different MCA loaded MPs were combined with West Nile Virus Envelope III protein (EDIII) and their vaccine adjuvant activities were compared in vivo. MPs containing the small molecule MCA ST101036 produced the highest anti-EDIII IgG titers of all the MCAs tested. Further, ST101036 MPs produced higher titers than ST101036 formulated with PEG as a cosolvent which highlights the benefit of Ace-DEX MPs over a conventional formulation technique. Finally, in a mouse model of West Nile Virus infection ST101036 MPs produced similar survival to soluble M7 (80-90%). Overall, these data show that ST101036 MPs produce a robust antibody response against EDIII and survival emphasizing the benefits of using Ace-DEX as a delivery platform for the poorly soluble ST101036.
Asunto(s)
Mastocitos , Virus del Nilo Occidental , Animales , Ratones , Dextranos/química , Sistemas de Liberación de Medicamentos , VacunaciónRESUMEN
INTRODUCTION: Vaccine technology has constantly advanced since its origin. One of these advancements is where purified parts of a pathogen are used rather than the whole pathogen. Subunit vaccines have no chance of causing disease; however, alone these antigens are often poorly immunogenic. Therefore, they can be paired with immune stimulating adjuvants. Further, subunits can be combined with delivery strategies such as nano/microparticles to enrich their delivery to organs and cells of interest as well as protect them from in vivo degradation. Here, we seek to highlight some of the more promising delivery strategies for protein antigens. AREAS COVERED: We present a brief description of the different types of vaccines, clinically relevant examples, and their disadvantages when compared to subunit vaccines. Also, specific preclinical examples of delivery strategies for protein antigens. EXPERT OPINION: Subunit vaccines provide optimal safety given that they have no risk of causing disease; however, they are often not immunogenic enough on their own to provide protection. Advanced delivery systems are a promising avenue to increase the immunogenicity of subunit vaccines, but scalability and stability can be improved. Further, more research is warranted on systems that promote a mucosal immune response to provide better protection against infection.
Asunto(s)
Vacunación , Vacunas , Vacunas de Subunidad , Antígenos , Inmunidad Mucosa , Adyuvantes InmunológicosRESUMEN
With over 2 million cancer cases and over 600,000 cancer-associated deaths predicted in the U.S. for 2022, this life-debilitating disease continuously impacts the lives of people across the nation every day. Therapeutic treatment options for cancer have historically involved chemotherapies to eradicate tumors with cytotoxic mechanisms which can negatively affect the efficacy versus toxicity ratio of treatment. With a need for more directed and therapeutically active options, targeted small-molecule inhibitors and immunotherapies have since emerged to mitigate treatment-associated toxicities. However, aggressive tumors can employ a wide range of defense mechanisms to evade monotherapy treatment altogether, resulting in the recurrence of therapeutically resistant tumors. Therefore, many clinical routines have included combination therapy in which anticancer agents are combined to provide a synergistic attack on tumors. Even with this approach, maximizing the efficacy of cancer treatment is contingent upon the dose of drug that reaches the site of the tumor, so often therapy is administered at the site of a tumor via localized delivery platforms. Commonly used platforms for localized drug delivery include polymeric wafers, nanofibrous scaffolds, and hydrogels where drug combinations can be loaded and delivered synchronously. Attaining synergistic activity from these localized systems is dependent on proper material selection and fabrication methods. Herein, we describe these important considerations for enhancing the efficacy of cancer combination therapy through biodegradable, localized delivery systems.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Polímeros , Terapia CombinadaRESUMEN
Metal-organic coordination polymers (CPs) are a broad class of materials that include metal-organic frameworks (MOFs). CPs are highly ordered crystalline materials that are composed of metal ions (or metal ion clusters) and multidentate organic ligands that serve as linkers. One-, two-, and three-dimensional CPs can be formed, with 2D and 3D structures referred to as MOFs. CPs have gained a lot of attention due to attractive structural features like structure versatility and tunability, and well-defined pores that enable the encapsulation of cargo. Further, CPs show a lot of promise for drug delivery applications, but only a very limited number of CPs are currently being evaluated in clinical trials. In this review, we outlined features that are desired for CP-based drug delivery platform, and briefly described most relevant characterization techniques. We highlighted some of the recent efforts directed toward developing CP-based drug delivery platforms with the emphasis on vaccines against cancer, infectious diseases, and viruses. We hope this review will be a helpful guide for those interested in the design and evaluation of CP-based immunological drug delivery platforms. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Asunto(s)
Vacunas contra el Cáncer , Enfermedades Transmisibles , Estructuras Metalorgánicas , Neoplasias , Humanos , Polímeros/química , Agentes Inmunomoduladores , Estructuras Metalorgánicas/química , Metales , Neoplasias/tratamiento farmacológicoRESUMEN
Influenza is a global health concern with millions of infections occurring yearly. Seasonal flu vaccines are one way to combat this virus; however, they are poorly protective against influenza as the virus is constantly mutating, particularly at the immunodominant hemagglutinin (HA) head group. A more broadly acting approach involves Computationally Optimized Broadly Reactive Antigen (COBRA). COBRA HA generates a broad immune response that is capable of protecting against mutating strains. Unfortunately, protein-based vaccines are often weekly immunogenic, so to help boost the immune response, we employed the use of acetalated dextran (Ace-DEX) microparticles (MPs) two ways: one to conjugate COBRA HA to the surface and a second to encapsulate cGAMP. To conjugate the COBRA HA to the surface of the Ace-DEX MPs, a poly(L-lactide)-polyethylene glycol co-polymer with a vinyl sulfone terminal group (PLLA-PEG-VS) was used. MPs encapsulating the STING agonist cGAMP were co-delivered with the antigen to form a broadly active influenza vaccine. This vaccine approach was evaluated in vivo with a prime-boost-boost vaccination schedule and illustrated generation of a humoral and cellular response that could protect against a lethal challenge of A/California/07/2009 in BALB/c mice.
Asunto(s)
Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Animales , Humanos , Ratones , Dextranos , Gripe Humana/prevención & control , Sulfonas , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control , Vacunas de SubunidadRESUMEN
Type 1 diabetes mellitus (T1D) is the leading metabolic disorder in children worldwide. Over time, incidence rates have continued to rise with 20 million individuals affected globally by the autoimmune disease. The current standard of care is costly and time-consuming requiring daily injections of exogenous insulin. T1D is mediated by autoimmune effector responses targeting autoantigens expressed on pancreatic islet ß-cells. One approach to treat T1D is to skew the immune system away from an effector response by taking an antigen-specific approach to heighten a regulatory response through a therapeutic vaccine. An antigen-specific approach has been shown with soluble agents, but the effects have been limited. Micro or nanoparticles have been used to deliver a variety of therapeutic agents including peptides and immunomodulatory therapies to immune cells. Particle-based systems can be used to deliver cargo into the cell and microparticles can passively target phagocytic cells. Further, surface modification and controlled release of encapsulated cargo can enhance delivery over soluble agents. The induction of antigen-specific immune tolerance is imperative for the treatment of autoimmune diseases such as T1D. This review highlights studies that utilize particle-based platforms for the treatment of T1D.