RESUMEN
We describe here the synthesis of isoselenochromenes via a nucleophilic selenocyclization reaction of benzodiynes with sodium selenide. The central parameters that affect this cyclization reaction were studied, and the best reaction conditions were applied to different substrates to determine the scope of the method. The results indicated that isoselenochromenes were obtained in higher yields when the reactions were performed by the addition of NaBH4 (3â equiv), at room temperature, under nitrogen atmosphere, to a solution of elemental selenium (2â equiv) in dimethylformamide (2â mL). After 1â h, a benzodiynes (0.25â mmol) solution in EtOH (3 mL) was added at room temperature. The reaction was stirred at 75 °C until the starting material was consumed. The best conditions were applied to benzodiynes having electron-rich, electron poor aromatic rings, and alkyl groups directly bonded to the alkynes. The same reaction condition was extended to isothiochromene derivatives but failed to prepare isotelurochromenes. The isoselenochromenes were easily transformed into three new classes of organoselenium compounds using classical methods available in the literature. We also conducted several control experiments to propose a reaction mechanism.
RESUMEN
In this work three Ni2+ complexes with general formula [NiCl2(Ph2P-N(R)-PPh2)], R = 2-CH2Py (Py = pyridine) - 1, CH2Ph (Ph = phenyl) - 2 and p-tol (p-tol = p-tolyl) - 3, were synthesized and characterized. These complexes were obtained in high yield by the reaction of NiCl2.6H2O and the corresponding diphenylphosphinoamine ligand (Ph2P-N(R)-PPh2) in CH2Cl2/MeOH (1:1) solution, at room temperature (â¼25 °C), and characterized by 1H and 31P {1H} NMR, vibrational spectroscopy in the infrared region, electronic spectroscopy in the UV-Vis regions, elemental analysis (%C, %H, %N) and single-crystal X-ray diffraction. The solution chemistry was studied in CDCl3/dmso-d6 (dimethylsulfoxide) or neat dmso-d6 using complex 2 as a model. The complexes were evaluated as cytotoxic agents against two cancer cells lines, A549 (lung cancer cells), B16F10 (melanoma cells) and the health cells HaCaT (human epithelial keratinocytes).
Asunto(s)
Dimetilsulfóxido , Humanos , Cristalografía por Rayos X , Espectroscopía de Resonancia MagnéticaRESUMEN
A method for the synthesis of 4-organoselanyl oxazinoindolone derivatives by the cascade cyclization of N-(alkoxycarbonyl)-2-alkynylindoles using iron(III) chloride and diorganyl diselenides as promoters was developed. This protocol was applied to a series of N-(alkoxycarbonyl)-2-alkynylindoles containing different substituents. The reaction conditions also tolerated a variety of diorganyl diselenides having both electron donating and electron withdrawing groups. However, the reaction did not work for diorganyl disulfides and ditellurides. The reaction mechanism seems to proceed via an ionic pathway and the cooperative action between iron(III) chloride and diorganyl diselenides is crucial for successful cyclization. We also found that using the same starting materials, by simply changing the electrophilic source to iodine, led to the formation of 4-iodo-oxazinoindolones. The high reactivity of Csp2 -Se and Csp2 -I bonds were tested under cross-coupling conditions leading to the preparation of a new class of functionalized indole derivatives. In addition, the absorption, emission and electrochemical properties of 4-organoselanyl oxazinoindolones showed an important relationship with the substituents of the aromatic rings. The advantages of the methodology include the use of electrophilic to promote the cyclization reaction and functionalization of the indole ring, and the electronic properties presented by the prepared compounds can be exploited as probes, analyte detectors and optical materials.
RESUMEN
Base-promoted cyclization of 3-organoselenyl-methylene-2-alkynyl aryl propargyl ethers has been developed for the synthesis of 3-butylselanyl-methylene benzofurans, 3-methyl-2-alkynyl-benzofurans, and 4-iodo-benzo[b]furan-fused selenopyrans. Under potassium tert-butoxide as the base and tetrahydrofuran as the solvent, at room temperature, 3-organoselenyl-methylene-2-alkynyl aryl propargyl ethers were converted into 3-butylselanyl-methylene benzofurans via a 5-exo-dig mode. Using the same substrate, changing the solvent to dimethylsulfoxide, 3-methyl-2-alkynyl-benzofurans were selectively obtained in good yields. From 3-butylselanyl-methylene benzofurans, 4-iodo-benzo[b]furan-fused selenopyrans were prepared through a nucleophilic cyclization promoted by molecular iodine. The optimization of the reaction conditions showed that the solvents governed the regioselectivity of this cyclization and the initial formation of the dimsyl anion by the reaction of dimethylsulfoxide with potassium tert-butoxide was crucial for the 3-methyl-2-alkynyl-benzofuran preparation. We also proposed the mechanism for the formation of the products, demonstrated that the methodology can be scaled up, and showed the application of the prepared compounds as substrate in further transformations.
Asunto(s)
Benzofuranos , Yodo , Alquinos , Benzofuranos/química , Butanoles , Ciclización , Dimetilsulfóxido , Éteres/química , Furanos , Yodo/química , SolventesRESUMEN
A range of bis-triazolylchalcogenium-BTD 3 was synthesized by a copper-catalyzed azide-alkyne cycloaddition of azido arylchalcogenides 1 and 4,7-diethynylbenzo[c][1,2,5]thiadiazole 2. Eight new compounds were obtained in moderate to good yields using 1 mol % of copper(II) acetate monohydrate under mild reaction conditions. In addition, the synthesized bis-triazolylchalcogenium-BTD 3a-3h were investigated regarding their photophysical, electrochemical, and biomolecule binding properties in solution. In general, compounds presented strong absorption bands at the 250-450 nm region and cyan to green emission properties. The redox process attributed to the chalcogen atom was observed by electrochemical analysis (CV techniques). In addition, spectroscopic studies by UV-vis, steady-state emission fluorescence, and molecular docking calculations evidenced the ability of each derivative to establish interactions with calf-thymus DNA (CT-DNA) and bovine serum albumin (BSA). The behavior presented for this new class of compounds makes them a promising tool as optical sensors for biomolecules.
Asunto(s)
Albúmina Sérica Bovina , Tiadiazoles , ADN , Simulación del Acoplamiento MolecularRESUMEN
A new one-pot two-step sequential methodology for synthesis of novel 3-carboxyethyl 4-[(tert-butylamino)methyl]-N-arylpyrazole derivatives is reported. One-pot transformation of ß-enamino diketones and arylhydrazines generated 4-iminium-N-arylpyrazole salt intermediates in situ, which were easily transformed into 4-[(tert-butylamino)methyl]-N-arylpyrazole derivatives by NaBH3CN. The products could be isolated in the free or hydrochloride salt forms. Also, it was possible to obtain the products in the zwitterionic form by ester group hydrolysis. Furthermore, all synthesised compounds were evaluated in vitro against a panel of eight human tumor cell lines. The 4-[(tert-butylamino)methyl]-N-arylpyrazole derivatives were much more powerful than the hydrochloride and zwitterionic forms. Moreover, the results suggest that the N-aryl group at the pyrazole ring is vital for modulating antiproliferative activity. The 3-carboxyethyl 4-[(tert-butylamino)methyl]-N-phenylpyrazoles 3a-g exhibited higher inhibitory activities against OVCAR-3, with GI50 values of 0.013-8.78⯵M, and lower inhibitory activities against normal human cell lines. Molecular docking was performed to evaluate the probable binding mode of 3a into active site of CDK2.
Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Neoplasias Ováricas/tratamiento farmacológico , Pirazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Neoplasias Ováricas/patología , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-ActividadRESUMEN
Complexes with general formula [RuCl(η6-p-cymene)(P-NR-P)]X (R = CH2Py (Py = pyridine) - [1a]+, CH2Ph (Ph = phenyl) - [1b]+, Ph - [1c] and p-tol (p-tol = p-tolyl) - [1d]+; X = PF6- or BF4-) were evaluated as cytotoxic agents against two cancer cell lines (HeLa and MDA-MB-231). All metal complexes are active in the range of concentrations tested (up to 100 µmol L-1). The IC50 (µmol L-1) values for the metal complexes are lower than that found for cisplatin. The activities are up to 6- and 15-fold higher than cisplatin for HeLa and MDA-MB-231 cancer cell lines, respectively. Studies of DNA binding and DNA cleavage were performed. DNA binding studies revealed a modest hypochromic shift in the metal complexes electronic spectra, indicating a weak interaction with Kb values in the range of 1.7 × 103-1.6 × 104. Although the cleavage tests revealed that in the dark DNA is not a biological target for these metal complexes, upon blue light irradiation they are activated causing DNA cleavage. Electrochemical studies showed the presence of two independent redox processes, one attributed to the oxidation process of Ru2+ â Ru3+ (EC process) and the other one to the reduction of Ru2+ â Ru1+, which is further reduced to Ru0 (ECE mechanism). In both processes, coupled chemical reactions were observed. DFT calculations were performed to support the electrochemical/chemical behavior of the complexes. The reactivity of complex [1b]BF4 with CH3CN was evaluated and two complexes were isolated [2b]BF4 and [3b]BF4. The complex mer-[RuCl(CH3CN)3(P-NCH2Ph-P)]BF4 ([2b]BF4) was isolated after refluxing the precursor [1b]BF4 in CH3CN. Isomerization of [2b]BF4 in CH3CN resulted in the formation of fac-[RuCl(CH3CN)3(P-NCH2Ph-P)]BF4. An attempt to isolate the fac-isomer by adding diethyl ether was unsuccessful, and the complex [3b]BF4 was observed as the major component. The complex [Ru2(µ-Cl3)(CH3CN)2(P-NCH2Ph-P)2]BF4 ([3b]BF4) proved to be very stable and can be obtained from both the mer- and the fac-isomers. The molecular structures of [1b]BF4 and [3b]BF4 were solved by single-crystal X-ray diffraction.
Asunto(s)
Aminas/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cimenos/química , Fosfinas/química , Rutenio/química , Neoplasias de la Mama Triple Negativas/patología , Antineoplásicos/química , Antineoplásicos/farmacología , Teoría Funcional de la Densidad , Electroquímica , Células HeLa , HumanosRESUMEN
The inflammatory response is the reaction of living tissue to an injury of a foreign nature, such as infection and irritants, and occurs as part of the body's natural defence response. Compounds capable of inhibiting cyclooxygenase (COX) enzymes, especially COX-2, have great potential as anti-inflammatory agents. Herein we present the regioselective synthesis of 49 novel compounds based on the 2-pyridone nucleus. The topical anti-inflammatory activity of seventeen compounds was evaluated in mice by croton oil (CO) induced ear edema assay. Most of the compounds exhibited a high level of in vivo anti-inflammatory activity, reducing ear edema and myeloperoxidase (MPO) activity. The most active compounds (2a and 7a) were inhibitors of COX enzymes. Compound 2a selectively inhibited the COX-2, while 7a was nonselective. Further, the compound 2a showed effective binding at the active site of COX-2 co-crystal by docking molecular study.
Asunto(s)
Antiinflamatorios/síntesis química , Piridonas/química , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Sitios de Unión , Dominio Catalítico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/química , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Humanos , Ratones , Conformación Molecular , Simulación del Acoplamiento Molecular , Peroxidasa/metabolismo , Piridonas/metabolismo , Piridonas/uso terapéutico , Estereoisomerismo , Relación Estructura-ActividadRESUMEN
We report here the regioselective 6-endo-dig cyclization of [2-(butylselanyl)phenyl]propynols promoted by the cooperative action between diorganyl diselenides and iron(III) chloride leading to the formation of 4-methylene-3-(organoselanyl)-selenochromenes. The results of the reaction condition optimization studies showed that the solvent, the iron source, and the amount of diorganyl diselenide had a fundamental influence on the reaction yields. In the presence of iron(III) chloride (1.5 equiv) and diorganyl diselenides (1.0 equiv), using dichloromethane as the solvent, at room temperature, 4-methylene-3-(organoselanyl)-selenochromenes were formed in moderate to good yields. The reaction conditions were found to be suitable for substrates bearing electron-donating and electron-withdrawing groups on the aromatic ring at both propargyl and alkyne positions. However, we observed a limitation in the reaction conditions when they were applied to other diorganyl dichalcogenides, such as diorganyl disulfides and diorganyl ditellurides, which did not give the corresponding products. We also elaborated on a mechanism proposal based on control experiments performed.
RESUMEN
This paper describes a selenium-promoted electrophilic cyclization of arylpropiolamides allowing the synthesis of 3-organoselenyl spiro[4,5]trienones via a 5-endo-dig ipso-mode. The 3-organoselenyl-quinolinone derivative formation via 6-endo-dig was avoided using an electrophilic organoselenium species in a metal-free protocol. The use of phenylselenyl bromide (1.3 equiv.), as the electrophilic source, in nitromethane (3 mL) at 90 °C enabled the cyclization of N-(2-methoxyphenyl)-N-methyl-3-phenylpropiolamides, giving 3-organoselenyl[4,5]triene-2,6-dione derivatives. The extension of the standard conditions to the N-(4-methoxyphenyl)-phenylpropiolamides led to the corresponding 3-organoselenyl spiro[4,5]trienones having the carbonyl group at the 8-position. Besides, we demonstrated a general application of our approach by using 3-organoselenyl spiro[4,5]trienones as substrates in Suzuki cross-coupling reactions, which gave the cross-coupled products in good yields.
RESUMEN
A practical synthetic approach to the synthesis of 3-(organoselenyl)-imidazothiazines was developed. The methodology involved the regioselective 6-endo-dig cyclization of thiopropargyl benzimidazoles promoted by diorganyl diselenides and iron(III) chloride. The investigation to determine the best reaction conditions indicated the use of thiopropargyl benzimidazoles (0.25 mmol) with diorganyl diselenides (1.0 equiv) and iron(III) chloride (2.0 equiv) in dichloromethane at 40 °C for 30 min to be optimal. Under these conditions, the scope of the substrates was evaluated varying the structures of thiopropargyl benzimidazoles and diorganyl diselenides giving 28 3-(organoselenyl)-imidazothiazines in moderate to good yields. The reaction conditions were also applicable to diorganyl ditellurides; however, they did not work for diorganyl disulfides. The mechanism studies were carried out indicating that the cyclization proceeds via a cooperative action of diorganyl diselenides and iron(III) chloride, but a direct electrophilic cyclization, promoted by the in situ formed electrophilic organoselenium species, cannot be ruled out.
RESUMEN
An efficient one-pot method is described for the highly regioselective synthesis of α-ketoamide N-arylpyrazoles from secondary ß-enamino diketones. For this, the key intermediate, 4-acyl 3,5-dihydroxypyrrolone, was generated in situ and underwent bimolecular nucleophilic substitution at C-5 by arylhydrazine, with subsequent heterocyclization at the carbonyl carbon of the acyl group. This strategy allowed for regiochemical control of α-ketoamide N-arylpyrazoles from ß-enamino diketones and arylhydrazines.
RESUMEN
The phytochemical investigation of Grazielia gaudichaudeana aerial parts yielded 15 compounds, including diterpenes, triterpenes, sterols and flavonoids. With exception to ent-kaurenoic acid diterpenes, the compounds isolated are being described for the first time in this species. Some unusual 1 H-NMR chemical shifts of 18-nor-ent-labdane (7-9) led us carry out a conformational analysis by theoretical calculations in order to support the experimental data. Moreover, due to the limitation of studies focused on pharmacological potential of Grazielia gaudichaudeana, the present study was carried out to investigate the antioxidant, antiproliferative, antiviral, antileishmanial and antimicrobial activities from the extract, fractions and isolated compounds obtained from this species. Ethyl acetate fraction showed significant activity in the antiproliferative assay, with GI50 range of 3.9 to 27.2â µg mL-1 . Dichloromethane fraction, rich in diterpenoids, inhibited all human tumor cell lines tested, and the nor-labdane 7 showed potent cytotoxic activity against glioma and ovary cancer cell lines.
Asunto(s)
Asteraceae/química , Diterpenos/química , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/química , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Antiprotozoarios/farmacología , Asteraceae/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Hongos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Leishmania/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Conformación Molecular , Extractos Vegetales/químicaRESUMEN
In this paper, we report a protocol for the preparation of 2-substituted-N-alkynylindoles via metalation of N-alkynylindoles followed by the capture of a 2-indolyl lithium intermediate with different electrophiles. The reactivity of the indoles prepared was also demonstrated through the reaction with CBr4/Ph3P for the preparation of 2-gem-dibromovinyl N-alkynylindoles and the hydrotelluration reaction of N-alkynylindoles, which led to vinylic tellurides. Some compounds prepared showed AChE inhibitory potential in the low micromolar range similar to that obtained with donepezil, a commercially available cholinesterase inhibitor.
RESUMEN
The investigation of the crude extract of leaves and bark of Pilocarpus pennatifolius Lemaire allowed isolated of a not yet described coumarin, together with three known coumarins (bergapten, xanthotoxin and dimethyl allyl xanthyletin), and a not yet described imidazole alkaloid. All structures were established by means of spectral analysis, including extensive 2D NMR studies. In addition, the alkaloid had its absolute stereochemistry determined by X-ray diffraction. Meanwhile, extracts and pure compounds were tested against various strains of bacteria and fungi, showing promising antimicrobial activities. We highlight the activities of crude bark methanol extract (CBME), of the leaf basic acetate fraction (LBAcF), and of compound 2 against the Gram negative bacteria Shigella flexneri (MICsâ¯=â¯7.8, 7.8 and 3.12⯵g·mL-1, respectively), of compound 5 against the Gram positive Enterococcus fecalis (MICâ¯=â¯1.56⯵g·mL-1), and against two Gram negative bacteria Salmonella enteritidis (MICâ¯=â¯1.56⯵g·mL-1), and Pseudomonas aeruginosa (MICâ¯=â¯6.25⯵g·ml-1). On the other hand, CBME and compounds 3-5 showed excellent activity against the fungus Candida krusei with MICs of 15.6, 1.56, and 3.12⯵g·mL-1 respectively, as actives or better than the antifungal standard fluconazole (MICâ¯=â¯3.12⯵g·mL-1).
Asunto(s)
Antiinfecciosos/aislamiento & purificación , Fitoquímicos/aislamiento & purificación , Pilocarpus/química , Extractos Vegetales/química , Antiinfecciosos/farmacología , Brasil , Cumarinas/aislamiento & purificación , Cumarinas/farmacología , Estructura Molecular , Fitoquímicos/farmacología , Corteza de la Planta/química , Hojas de la Planta/químicaRESUMEN
The distorted tetrahedral [V(OAd)4] alkoxide (OAd = 1-adamantoxide, complex 1) is the first homoleptic, mononuclear vanadium(IV) alkoxide to be characterized in the solid state by X-ray diffraction analysis. The compound crystallizes in the cubic P4Ì 3 n space group with two highly disordered, crystallographically independent molecules in the asymmetric unit. Spin Hamiltonian parameters extracted from low temperature X- and Q-band electron paramagnetic resonance (EPR) experiments performed for polycrystalline samples of 1, both in the concentrated (bulk) form and diluted in the diamagnetic [Ti(OAd)4] analogue, reveal a fully axial system with g z < g x, g y and A z â« A x, A y. Complex 1 has also been characterized by alternate current susceptometry with varying temperature (3-30 K) and static magnetic field (up to 8.5 T), showing field-induced slow relaxation of the magnetization with relaxation times ranging from ca. 3 ms at 3 K to 0.02-0.03 ms at 30 K, in line with relevant results described recently for other potential molecular quantum bits. Pulsed EPR measurements, in turn, disclosed long coherence times of ca. 4 µs at temperatures lower than 40 K, despite the presence of the H-rich ligands. The slow spin relaxation in 1 is the first observed for a tetracoordinate nonoxido vanadium(IV) complex, and results are compared here to those generated by square-pyramidal VIV(O)2+ and trigonal prismatic V4+ with oxygen donor atom sets. Considering that the number of promising d1 complexes investigated in detail for slow magnetization dynamics is still small, the present work contributes to the establishment of possible structural/electronic correlations of interest to the field of quantum information processing.
RESUMEN
A novel and efficient SeCl2-mediated chalcogenative cyclization strategy toward 3-selenophen-3-yl-1 H-indoles from readily available and conveniently substituted propargyl indoles is described. It entails an unprecedented selenirenium-induced 1,2-indolyl shift prompted by the electrophilic addition of SeCl2 to the triple bond of the propargyl indole, followed by cyclization through the intermediacy of a 1-seleno-1,3-diene. The reaction takes place at room temperature and shows excellent selectivity, broad substrate scope, and wide functional group tolerance.
RESUMEN
Four methodologies are reported for the regioselective synthesis of four series of regioisomer isoxazoles from cyclocondensation of ß-enamino diketones and hydroxylamine hydrochloride. Regiochemical control was achieved by varying reaction conditions and substrate structure. The mild reaction conditions used to access 4,5-disubstituted, 3,4-disubtituted, and 3,4,5-trisubstituted regioisomer isoxazoles, as well as the pharmacological and synthetic potential of the products, make these novel methodologies very powerful.
RESUMEN
An alternative highly regioselective synthetic method for the preparation of 3,5-disubstituted 4-formyl-N-arylpyrazoles in a one-pot procedure is reported. The methodology developed was based on the regiochemical control of the cyclocondensation reaction of ß-enamino diketones with arylhydrazines. Structural modifications in the ß-enamino diketone system allied to the Lewis acid carbonyl activator BF3 were strategically employed for this control. Also a one-pot method for the preparation of 3,5-disubstituted 4-hydroxymethyl-N-arylpyrazole derivatives from the ß-enamino diketone and arylhydrazine substrates is described.
RESUMEN
Several ruthenium complexes have been investigated regarding anti-Mycobacterium tuberculosis (anti-MTb) activity, with some diphosphine-containing ruthenium complexes comparable to first and second line drugs. However, to the best of our knowledge, there is no PNP-containing ruthenium complexes applied as metallodrugs. Thus, this study focused on the synthesis, characterization and anti-MTb activity of a new series of coordination compounds with general formula [RuCl(η6-p-cymene)(PNRP)]X (R=CH2Py (Py=pyridine)-[1a], CH2Ph (Ph=phenyl)-[1b], Ph-[1c] and p-tol (p-tol=p-tolyl)-[1d]; X=PF6- or BF4-). The complexes were fully characterized by NMR (1H, 31P{1H}), vibrational spectroscopy (FTIR), ESI-MS, molar conductance, elemental analysis and X-ray diffraction studies. The molecular structures of [1a]PF6, [1c]BF4 and [1d]PF6 were determined and confirm the spectroscopic and ESI-MS data. The complexes were used in anti-MTb trials, and the preliminary results are presented. The complexes are promising anti-MTb agents with MIC90 (Minimum Inhibitory Concentration of compounds required to inhibit the growth of 90% of MTb) values comparable with the Ethambutol, the reference drug used in this work, and complex [1a]BF4 presented the highest selectivity index.